Skip to main content
Log in

Identification of key genes and construction of microRNA–mRNA regulatory networks in multiple myeloma by integrated multiple GEO datasets using bioinformatics analysis

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Multiple myeloma (MM) is a common hematological malignancy. To identify key genes and microRNAs in MM, we downloaded two gene expression profiles (GSE16558 and GSE47552) and two microRNA expression profiles (GSE17498 and GSE16558) from the Gene Expression Omnibus (GEO) database. A total of 596 differentially expressed genes (DEGs) and 39 differentially expressed microRNAs (DEMs) were screened out. Pathway analysis showed that upregulated genes were mainly enriched in the “B cell receptor signaling pathway”, “Cell cycle” and “NF-kappa B signaling pathway”, whereas downregulated genes were mainly enriched in the “Ribosome”, “FoxO signaling pathway” and “p53 signaling pathway”. We subsequently constructed a protein–protein interaction network of DEGs consisting of 277 genes and 563 interactions. In addition, 32 genes with high degrees in the network were identified as hub genes in MM, e.g. HDAC2, RBBP4, CREB1, and RB1. Additionally, we constructed a microRNA–mRNA regulatory network depicting interactions between DEMs and their targets, including the miR-135b–GADD45A and miR-148a–USPL1 pairs. In conclusion, the results of this data mining and integration help reveal the molecular basis of MM pathogenesis as well as potential biomarkers and therapeutic targets for MM diagnosis and treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Palumbo A, Anderson K. Multiple myeloma. N Engl J Med. 2011;364(11):1046–60. doi:10.1056/NEJMra1011442.

    Article  CAS  PubMed  Google Scholar 

  2. Landgren O, Kristinsson SY, Goldin LR, Caporaso NE, Blimark C, Mellqvist UH, et al. Risk of plasma cell and lymphoproliferative disorders among 14621 first-degree relatives of 4458 patients with monoclonal gammopathy of undetermined significance in Sweden. Blood. 2009;114(4):791–5. doi:10.1182/blood-2008-12-191676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Walker BA, Wardell CP, Murison A, Boyle EM, Begum DB, Dahir NM, et al. APOBEC family mutational signatures are associated with poor prognosis translocations in multiple myeloma. Nat Commun. 2015;6:6997. doi:10.1038/ncomms7997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lohr JG, Stojanov P, Carter SL, Cruz-Gordillo P, Lawrence MS, Auclair D, et al. Widespread genetic heterogeneity in multiple myeloma: implications for targeted therapy. Cancer Cell. 2014;25(1):91–101. doi:10.1016/j.ccr.2013.12.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bolli N, Avet-Loiseau H, Wedge DC, Van Loo P, Alexandrov LB, Martincorena I, et al. Heterogeneity of genomic evolution and mutational profiles in multiple myeloma. Nat Commun. 2014;5:2997. doi:10.1038/ncomms3997.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Rio-Machin A, Ferreira BI, Henry T, Gomez-Lopez G, Agirre X, Alvarez S, et al. Downregulation of specific miRNAs in hyperdiploid multiple myeloma mimics the oncogenic effect of IgH translocations occurring in the non-hyperdiploid subtype. Leukemia. 2013;27(4):925–31. doi:10.1038/leu.2012.302.

    Article  CAS  PubMed  Google Scholar 

  7. Lionetti M, Biasiolo M, Agnelli L, Todoerti K, Mosca L, Fabris S, et al. Identification of microRNA expression patterns and definition of a microRNA/mRNA regulatory network in distinct molecular groups of multiple myeloma. Blood. 2009;114(25):e20–6. doi:10.1182/blood-2009-08-237495.

    Article  CAS  PubMed  Google Scholar 

  8. Sharma A, Heuck CJ, Fazzari MJ, Mehta J, Singhal S, Greally JM, et al. DNA methylation alterations in multiple myeloma as a model for epigenetic changes in cancer. Wiley Interdiscip Rev Syst Biol Med. 2010;2(6):654–69. doi:10.1002/wsbm.89.

    Article  CAS  PubMed  Google Scholar 

  9. Dimopoulos K, Gimsing P, Gronbaek K. Aberrant microRNA expression in multiple myeloma. Eur J Haematol. 2013;91(2):95–105. doi:10.1111/ejh.12124.

    Article  CAS  PubMed  Google Scholar 

  10. Mithraprabhu S, Kalff A, Chow A, Khong T, Spencer A. Dysregulated Class I histone deacetylases are indicators of poor prognosis in multiple myeloma. Epigenetics. 2014;9(11):1511–20. doi:10.4161/15592294.2014.983367.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Brandl A, Heinzel T, Kramer OH. Histone deacetylases: salesmen and customers in the post-translational modification market. Biol Cell. 2009;101(4):193–205. doi:10.1042/BC20080158.

    Article  CAS  PubMed  Google Scholar 

  12. Kramer OH. HDAC2: a critical factor in health and disease. Trends Pharmacol Sci. 2009;30(12):647–55. doi:10.1016/j.tips.2009.09.007.

    Article  PubMed  Google Scholar 

  13. Harada T, Hideshima T, Anderson KC. Histone deacetylase inhibitors in multiple myeloma: from bench to bedside. Int J Hematol. 2016;104(3):300–9. doi:10.1007/s12185-016-2008-0.

    Article  CAS  PubMed  Google Scholar 

  14. Fritsche P, Seidler B, Schuler S, Schnieke A, Gottlicher M, Schmid RM, et al. HDAC2 mediates therapeutic resistance of pancreatic cancer cells via the BH3-only protein NOXA. Gut. 2009;58(10):1399–409. doi:10.1136/gut.2009.180711.

    Article  CAS  PubMed  Google Scholar 

  15. Hanigan CL, Van Engeland M, De Bruine AP, Wouters KA, Weijenberg MP, Eshleman JR, et al. An inactivating mutation in HDAC2 leads to dysregulation of apoptosis mediated by APAF1. Gastroenterology. 2008;135(5):1654–64. doi:10.1053/j.gastro.2008.07.078.

    Article  CAS  PubMed  Google Scholar 

  16. Wagner T, Brand P, Heinzel T, Kramer OH. Histone deacetylase 2 controls p53 and is a critical factor in tumorigenesis. Biochim Biophys Acta. 2014;1846(2):524–38. doi:10.1016/j.bbcan.2014.07.010.

    CAS  PubMed  Google Scholar 

  17. Zhao J, Xie C, Edwards H, Wang G, Taub JW, Ge Y. Histone deacetylases 1 and 2 cooperate in regulating BRCA1, CHK1, and RAD51 expression in acute myeloid leukemia cells. Oncotarget. 2016;. doi:10.18632/oncotarget.14062.

    Google Scholar 

  18. Todd MA, Picketts DJ. PHF6 interacts with the nucleosome remodeling and deacetylation (NuRD) complex. J Proteome Res. 2012;11(8):4326–37. doi:10.1021/pr3004369.

    Article  CAS  PubMed  Google Scholar 

  19. Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D. Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein. Genes Dev. 2002;16(22):2893–905. doi:10.1101/gad.1035902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Furuyama T, Dalal Y, Henikoff S. Chaperone-mediated assembly of centromeric chromatin in vitro. Proc Natl Acad Sci USA. 2006;103(16):6172–7. doi:10.1073/pnas.0601686103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang W, Tyl M, Ward R, Sobott F, Maman J, Murthy AS, et al. Structural plasticity of histones H3–H4 facilitates their allosteric exchange between RbAp48 and ASF1. Nat Struct Mol Biol. 2013;20(1):29–35. doi:10.1038/nsmb.2446.

    Article  PubMed  Google Scholar 

  22. Li Y, Xu D, Bao C, Zhang Y, Chen D, Zhao F, et al. MicroRNA-135b, a HSF1 target, promotes tumor invasion and metastasis by regulating RECK and EVI5 in hepatocellular carcinoma. Oncotarget. 2015;6(4):2421–33. doi:10.18632/oncotarget.2965.

    Article  PubMed  Google Scholar 

  23. He Y, Wang J, Wang J, Yung VY, Hsu E, Li A, et al. MicroRNA-135b regulates apoptosis and chemoresistance in colorectal cancer by targeting large tumor suppressor kinase 2. Am J Cancer Res. 2015;5(4):1382–95.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu W, Wang Z, Yang P, Yang J, Liang J, Chen Y, et al. MicroRNA-135b regulates metastasis suppressor 1 expression and promotes migration and invasion in colorectal cancer. Mol Cell Biochem. 2014;388(1–2):249–59. doi:10.1007/s11010-013-1916-z.

    Article  CAS  PubMed  Google Scholar 

  25. Hua K, Jin J, Zhao J, Song J, Song H, Li D, et al. miR-135b, upregulated in breast cancer, promotes cell growth and disrupts the cell cycle by regulating LATS2. Int J Oncol. 2016;48(5):1997–2006. doi:10.3892/ijo.2016.3405.

    CAS  PubMed  Google Scholar 

  26. Hoffman B, Liebermann DA. Gadd45 modulation of intrinsic and extrinsic stress responses in myeloid cells. J Cell Physiol. 2009;218(1):26–31. doi:10.1002/jcp.21582.

    Article  CAS  PubMed  Google Scholar 

  27. Liebermann DA, Tront JS, Sha X, Mukherjee K, Mohamed-Hadley A, Hoffman B. Gadd45 stress sensors in malignancy and leukemia. Crit Rev Oncogenesis. 2011;16(1–2):129–40.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Guo W, Dong Z, Guo Y, Chen Z, Kuang G, Yang Z. Methylation-mediated repression of GADD45A and GADD45G expression in gastric cardia adenocarcinoma. Int J Cancer. 2013;133(9):2043–53. doi:10.1002/ijc.28223.

    Article  CAS  PubMed  Google Scholar 

  29. Ramachandran K, Gopisetty G, Gordian E, Navarro L, Hader C, Reis IM, et al. Methylation-mediated repression of GADD45alpha in prostate cancer and its role as a potential therapeutic target. Cancer Res. 2009;69(4):1527–35. doi:10.1158/0008-5472.CAN-08-3609.

    Article  CAS  PubMed  Google Scholar 

  30. Amente S, Zhang J, Lavadera ML, Lania L, Avvedimento EV, Majello B. Myc and PI3 K/AKT signaling cooperatively repress FOXO3a-dependent PUMA and GADD45a gene expression. Nucleic Acids Res. 2011;39(22):9498–507. doi:10.1093/nar/gkr638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Krzeminski P, Sarasquete ME, Misiewicz-Krzeminska I, Corral R, Corchete LA, Martin AA, et al. Insights into epigenetic regulation of microRNA-155 expression in multiple myeloma. Biochim Biophys Acta. 2015;1849(3):353–66. doi:10.1016/j.bbagrm.2014.12.002.

    Article  CAS  PubMed  Google Scholar 

  32. Bi C, Chung TH, Huang G, Zhou J, Yan J, Ahmann GJ, et al. Genome-wide pharmacologic unmasking identifies tumor suppressive microRNAs in multiple myeloma. Oncotarget. 2015;6(28):26508–18. doi:10.18632/oncotarget.4769.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Porstner M, Winkelmann R, Daum P, Schmid J, Pracht K, Corte-Real J, et al. miR-148a promotes plasma cell differentiation and targets the germinal center transcription factors Mitf and Bach2. Eur J Immunol. 2015;45(4):1206–15. doi:10.1002/eji.201444637.

    Article  CAS  PubMed  Google Scholar 

  34. Chen Z, Saad R, Jia P, Peng D, Zhu S, Washington MK, et al. Gastric adenocarcinoma has a unique microRNA signature not present in esophageal adenocarcinoma. Cancer. 2013;119(11):1985–93. doi:10.1002/cncr.28002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zheng G, Xiong Y, Xu W, Wang Y, Chen F, Wang Z, et al. A two-microRNA signature as a potential biomarker for early gastric cancer. Oncol Lett. 2014;7(3):679–84. doi:10.3892/ol.2014.1797.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Takahashi M, Cuatrecasas M, Balaguer F, Hur K, Toiyama Y, Castells A, et al. The clinical significance of MiR-148a as a predictive biomarker in patients with advanced colorectal cancer. PLoS One. 2012;7(10):e46684. doi:10.1371/journal.pone.0046684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hanoun N, Delpu Y, Suriawinata AA, Bournet B, Bureau C, Selves J, et al. The silencing of microRNA 148a production by DNA hypermethylation is an early event in pancreatic carcinogenesis. Clin Chem. 2010;56(7):1107–18. doi:10.1373/clinchem.2010.144709.

    Article  CAS  PubMed  Google Scholar 

  38. Geiss-Friedlander R, Melchior F. Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol. 2007;8(12):947–56. doi:10.1038/nrm2293.

    Article  CAS  PubMed  Google Scholar 

  39. Gareau JR, Lima CD. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol. 2010;11(12):861–71. doi:10.1038/nrm3011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Johnson ES. Protein modification by SUMO. Annu Rev Biochem. 2004;73:355–82. doi:10.1146/annurev.biochem.73.011303.074118.

    Article  CAS  PubMed  Google Scholar 

  41. Hay RT. SUMO-specific proteases: a twist in the tail. Trends Cell Biol. 2007;17(8):370–6. doi:10.1016/j.tcb.2007.08.002.

    Article  CAS  PubMed  Google Scholar 

  42. Bawa-Khalfe T, Yeh ET. SUMO losing balance: SUMO proteases disrupt SUMO homeostasis to facilitate cancer development and progression. Genes Cancer. 2010;1(7):748–52. doi:10.1177/1947601910382555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schulz S, Chachami G, Kozaczkiewicz L, Winter U, Stankovic-Valentin N, Haas P, et al. Ubiquitin-specific protease-like 1 (USPL1) is a SUMO isopeptidase with essential, non-catalytic functions. EMBO Rep. 2012;13(10):930–8. doi:10.1038/embor.2012.125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bermejo JL, Kabisch M, Dunnebier T, Schnaidt S, Melchior F, Fischer HP, et al. Exploring the association between genetic variation in the SUMO isopeptidase gene USPL1 and breast cancer through integration of data from the population-based GENICA study and external genetic databases. Int J Cancer. 2013;133(2):362–72. doi:10.1002/ijc.28040.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Wang, H. & Yang, W. Identification of key genes and construction of microRNA–mRNA regulatory networks in multiple myeloma by integrated multiple GEO datasets using bioinformatics analysis. Int J Hematol 106, 99–107 (2017). https://doi.org/10.1007/s12185-017-2216-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-017-2216-2

Keywords

Navigation