Skip to main content
Log in

Epoetin beta pegol, but not recombinant erythropoietin, retains its hematopoietic effect in vivo in the presence of the sialic acid-metabolizing enzyme sialidase

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Erythropoiesis-stimulating agents (ESAs) are widely used for treating chronic kidney disease (CKD)-associated anemia. The biological activity of ESAs is mainly regulated by the number of sialic acid-containing carbohydrates on the erythropoietin (EPO) peptide. Sialidase, a sialic acid-metabolizing enzyme that accumulates in CKD patients, is suspected of contributing to shortening the circulation half-life of ESAs. Epoetin beta pegol (continuous erythropoietin receptor activator; C.E.R.A.), is an EPO integrated with methoxypolyethylene glycol (PEG). It has been suggested that C.E.R.A. may exert a favorable therapeutic effect, even under conditions of elevated sialidase; however, no detailed investigation of the pharmacological profile of C.E.R.A. in the presence of sialidase has been reported. In the present study, we injected C.E.R.A. or EPO pre-incubated with sialidase into rats, and assessed the hematopoietic effect by reticulocyte count. The hematopoietic effect of C.E.R.A., but not EPO, was preserved after sialidase treatment, despite the removal of sialic acid. Proliferation of EPO-dependent leukemia cells (AS-E2) was significantly increased by desialylated C.E.R.A. and EPO compared to non-treated C.E.R.A. or EPO. In conclusion, we show that C.E.R.A. exerts a favorable hematopoietic effect even under conditions of elevated sialidase. Our findings may contribute to a better understanding of CKD and more effective therapeutic approaches based on a patient’s profile of anemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lin FK, Suggs S, Lin CH, Browne JK, Smalling R, Egrie JC, et al. Cloning and expression of the human erythropoietin gene. Proc Natl Acad Sci U S A. 1985;82:7580–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jacobs K, Shoemaker C, Rudersdorf R, Neill SD, Kaufman RJ, Mufson A, et al. Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature. 1985;313:806–10.

    Article  CAS  PubMed  Google Scholar 

  3. Sasaki H, Bothner B, Dell A, Fukuda M. Carbohydrate structure of erythropoietin expressed in Chinese hamster ovary cells by a human erythropoietin cDNA. J Biol Chem. 1987;262:12059–76.

    CAS  PubMed  Google Scholar 

  4. Fukuda MN, Sasaki H, Lopez L, Fukuda M. Survival of recombinant erythropoietin in the circulation: the role of carbohydrates. Blood. 1989;73:84–9.

    CAS  PubMed  Google Scholar 

  5. Spivak JL, Hogans BB. The in vivo metabolism of recombinant human erythropoietin in the rat. Blood. 1989;73:90–9.

    CAS  PubMed  Google Scholar 

  6. Jelkmann W. The enigma of the metabolic fate of circulating erythropoietin (Epo) in view of the pharmacokinetics of the recombinant drugs rhEpo and NESP. Eur J Haematol. 2002;69:265–74.

    Article  CAS  PubMed  Google Scholar 

  7. Egrie JC, Browne JK. Development and characterization of darbepoetin alfa. Oncology. 2002;16:13–22.

    PubMed  Google Scholar 

  8. Egrie JC, Dwyer E, Browne JK, Hitz A, Lykos MA. Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp Hematol. 2003;31:290–9.

    Article  CAS  PubMed  Google Scholar 

  9. Elliott S, Egrie J, Browne J, Lorenzini T, Busse L, Rogers N, et al. Control of rHuEPO biological activity: the role of carbohydrate. Exp Hematol. 2004;32:1146–55.

    Article  CAS  PubMed  Google Scholar 

  10. Locatelli F, Reigner B. C.E.R.A.: pharmacodynamics, pharmacokinetics and efficacy in patients with chronic kidney disease. Expert Opin Investig Drugs. 2007;16:1649–61.

    Article  CAS  PubMed  Google Scholar 

  11. Topf JM. CERA: third-generation erythropoiesis-stimulating agent. Expert Opin Pharmacother. 2008;9:839–49.

    Article  CAS  PubMed  Google Scholar 

  12. Turecek PL, Bossard MJ, Schoetens F, Ivens IA. PEGylation of biopharmaceuticals: a review of chemistry and nonclinical safety information of approved drugs. J Pharm Sci. 2016;105:460–75.

    Article  CAS  PubMed  Google Scholar 

  13. Veronese FM, Mero A. The impact of PEGylation on biological therapies. BioDrugs. 2008;22:315–29.

    Article  CAS  PubMed  Google Scholar 

  14. Wong BC, Ravani P, Manns BJ, Lewin A, Zhang X, Chin R, et al. Association of a change in erythropoiesis-stimulating agent dose during hospitalization and subsequent hemoglobin levels and transfusions in hemodialysis patients. Am J Kidney Dis. 2013;62:947–52.

    Article  CAS  PubMed  Google Scholar 

  15. Kalantar-Zadeh K, Lee GH, Miller JE, Streja E, Jing J, Robertson JA, et al. Predictors of hyporesponsiveness to erythropoiesis-stimulating agents in hemodialysis patients. Am J Kidney Dis. 2009;53:823–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu IW, Hsu KH, Sun CY, Tsai CJ, Wu MS, Lee CC. Oral adsorbent AST-120 potentiates the effect of erythropoietin-stimulating agents on Stage 5 chronic kidney disease patients: a randomized crossover study. Nephrol Dial Transplant. 2014;29:1719–27.

    Article  CAS  PubMed  Google Scholar 

  17. Bamgbola OF. Pattern of resistance to erythropoietin-stimulating agents in chronic kidney disease. Kidney Int. 2011;80:464–74.

    Article  CAS  PubMed  Google Scholar 

  18. Macdougall IC. Role of uremic toxins in exacerbating anemia in renal failure. Kidney Int Suppl. 2001;78:S67–72.

    Article  CAS  PubMed  Google Scholar 

  19. Shannon JS, Lappin TR, Elder GE, Roberts GM, McGeown MG, Bridges JM. Increased plasma glycosidase and protease activity in uraemia: possible role in the aetiology of the anaemia of chronic renal failure. Clin Chim Acta. 1985;153:203–7.

    Article  CAS  PubMed  Google Scholar 

  20. Roozbeh J, Merat A, Bodagkhan F, Afshariani R, Yarmohammadi H. Significance of serum and urine neuraminidase activity and serum and urine level of sialic acid in diabetic nephropathy. Int Urol Nephrol. 2011;43:1143–8.

    Article  CAS  PubMed  Google Scholar 

  21. Lowy PH, Keighley G, Borsook H. Inactivation of erythropoietin by neuraminidase and by mild substitution reactions. Nature. 1960;185:102–3.

    Article  CAS  PubMed  Google Scholar 

  22. Shimizu K, Haruyama W, Ogawsawara Y, Kanda T. [Comparison of erythropoiesis-stimulating activity between darbepoetin alfa (DA) and epoetin beta pegol (C.E.R.A.) in normal rats.]. Jin to Toseki (Kidney and Dialysis) [Japanese]. 2013;75:437-42.

  23. Miyazaki Y, Kuriyama K, Higuchi M, Tsushima H, Sohda H, Imai N, et al. Establishment and characterization of a new erythropoietin-dependent acute myeloid leukemia cell line, AS-E2. Leukemia. 1997;11:1941–9.

    Article  CAS  PubMed  Google Scholar 

  24. Goldwasser E, Kung CK, Eliason J. On the mechanism of erythropoietin-induced differentiation. 13. The role of sialic acid in erythropoietin action. J Biol Chem. 1974;249:4202–6.

    CAS  PubMed  Google Scholar 

  25. Dordal MS, Wang FF, Goldwasser E. The role of carbohydrate in erythropoietin action. Endocrinology. 1985;116:2293–9.

    Article  CAS  PubMed  Google Scholar 

  26. Cohan RA, Madadkar-Sobhani A, Khanahmad H, Roohvand F, Aghasadeghi MR, Hedayati MH, et al. Design, modeling, expression, and chemoselective PEGylation of a new nanosize cysteine analog of erythropoietin. Int J Nanomedicine. 2011;6:1217–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Adachi Y, Nakagawa Y, Nishio A. In patients treated with peritoneal dialysis, icodextrin improves erythropoietin-resistant anemia through blockade of asialo receptors on hepatocytes. Adv Perit Dial. 2006;22:41–4.

    CAS  PubMed  Google Scholar 

  28. Agoram B, Aoki K, Doshi S, Gegg C, Jang G, Molineux G, et al. Investigation of the effects of altered receptor binding activity on the clearance of erythropoiesis-stimulating proteins: nonerythropoietin receptor-mediated pathways may play a major role. J Pharm Sci. 2009;98:2198–211.

    Article  CAS  PubMed  Google Scholar 

  29. Wang YJ, Hao SJ, Liu YD, Hu T, Zhang GF, Zhang X, et al. PEGylation markedly enhances the in vivo potency of recombinant human non-glycosylated erythropoietin: a comparison with glycosylated erythropoietin. J Control Release. 2010;145:306–13.

    Article  CAS  PubMed  Google Scholar 

  30. Uchida E, Morimoto K, Kawasaki N, Izaki Y, Abdu Said A, Hayakawa T. Effect of active oxygen radicals on protein and carbohydrate moieties of recombinant human erythropoietin. Free Radic Res. 1997;27:311–23.

    Article  CAS  PubMed  Google Scholar 

  31. Bartnicki P, Fijalkowski P, Majczyk M, Blaszczyk J, Banach M, Rysz J. Effect of methoxy polyethylene glycol-epoetin beta on oxidative stress in predialysis patients with chronic kidney disease. Med Sci Monit. 2013;19:954–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kato A, Odamaki M, Hishida A. Blood 8-hydroxy-2′-deoxyguanosine is associated with erythropoietin resistance in haemodialysis patients. Nephrol Dial Transpl. 2003;18:931–6.

    Article  CAS  Google Scholar 

  33. Kun S, Mikolas E, Molnar GA, Selley E, Laczy B, Csiky B, et al. Association of plasma ortho-tyrosine/para-tyrosine ratio with responsiveness of erythropoiesis-stimulating agent in dialyzed patients. Redox Rep. 2014;19:190–8.

    Article  CAS  PubMed  Google Scholar 

  34. Levinsky H, Gafter U, Levi J, Allalouf D. Neuraminidase-like activity in sera of uremic anemic patients. Nephron. 1984;37:35–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Kazuyuki Okui for his excellent advice with the experimental concept, and Akihisa Sakamoto, Hideyuki Yasuno and Kenji Yogo for their valuable help in performing the experiments and their helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken Aizawa.

Ethics declarations

Conflict of interest

All authors are employees of Chugai Pharmaceutical Co., Ltd.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aizawa, K., Kawasaki, R., Tashiro, Y. et al. Epoetin beta pegol, but not recombinant erythropoietin, retains its hematopoietic effect in vivo in the presence of the sialic acid-metabolizing enzyme sialidase. Int J Hematol 104, 182–189 (2016). https://doi.org/10.1007/s12185-016-2000-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-016-2000-8

Keywords

Navigation