Skip to main content
Log in

A Novel Combination Therapy of Erythropoietin and Thrombopoietin to Treat Erythropoietin-Resistance anemia

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Treatment with recombinant human erythropoietin (rHuEPO) may correct anemia in patients with chronic kidney disease. However, up to 10% of these patients exhibit EPO resistance or hyporesponsiveness, which may be caused by the depletion of erythroid progenitor cells. Thrombopoietin (TPO) stimulates the self-renewal of stem cells and promotes the growth of early erythroid progenitor cells. The objective of this study was to determine whether the combination of recombinant human TPO (rHuTPO) and rHuEPO could correct the depletion of erythroid precursor cells to treat EPO-resistant anemia.

Methods

To test our hypothesis, pharmacokinetic (PK) and pharmacodynamic (PD) studies of rHuEPO and rHuTPO were performed in healthy rats. Rats received rHuEPO or rHuTPO alone or in combination. Plasma concentrations of rHuTPO and rHuEPO were measured. PD responses, including erythropoietic and thrombopoietic responses, were assessed in peripheral blood.

Results

On one hand, the results demonstrated the synergistic effect of the combination of rHuEPO and rHuTPO on erythropoiesis. Compared with rHuEPO monotherapy, the combination therapies further stimulated the production of red blood cells and hemoglobin. On the other hand, rHuEPO inhibited the platelet production induced by rHuTPO and mitigate the risk of blood clots. Furthermore, we successfully developed a mechanism-based PD model to simultaneously characterize the responses of the two molecules.

Conclusions

Overall, our study indicated that a combination therapy of rHuTPO and rHuEPO could be used to treat EPO-resistant anemia and provided a quantitative basis for further optimizing the combination therapy for clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

AUEC:

The area under the effect curve

BFU-E:

Burst forming unit-erythroid

CFU-E:

Colony forming unit-erythroid

CKD:

Chronic kidney disease

CWRES:

Conditional weighted residual

EPO/rHuEPO:

Erythropoietin/recombinant human erythropoietin

ESA:

Erythropoiesis-stimulating agents

HGB:

Hemoglobin

HIF-PHIs:

Hypoxia-inducible factor prolyl hydroxylase enzyme inhibitors

HSC:

Hematopoietic stem cell

IOV:

Inter-occasion variability

IV:

Intravenous

MCH:

Mean corpuscular hemoglobin

MEP:

Megakaryocyte-erythroid progenitors

MK:

Megakaryocyte

M-M:

Michaelis-Menten saturable kinetics

NCA:

The noncompartmental analysis

PD:

Pharmacodynamic

PK:

Pharmacokinetic

PLT:

Platelet

PPARα:

Peroxisome proliferator-activated receptor alpha

RBC:

Red blood cell

RET:

Reticulocyte

SC:

Subcutaneous

TGF-β:

Transforming growth factor-beta

TPO/rHuTPO:

Thrombopoietin/recombinant human thrombopoietin

TPO-RA:

Thrombopoietin receptor agonist

References

  1. Watowich SS. The erythropoietin receptor: molecular structure and hematopoietic signaling pathways. J Investig Med. 2011;59(7):1067–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Macdougall IC, Obrador GT. How important is transfusion avoidance in 2013? Nephrol Dial Transplant. 2013;28(5):1092–9.

    Article  PubMed  Google Scholar 

  3. Palmer SC et al. Erythropoiesis-stimulating agents for anaemia in adults with chronic kidney disease: a network meta-analysis. Cochrane Database Syst Rev. 2014;(12).

  4. Johnson DW, Pollock CA, Macdougall IC. Erythropoiesis-stimulating agent hyporesponsiveness. Nephrology (Carlton). 2007;12(4):321–30.

    Article  CAS  Google Scholar 

  5. Alves MT, et al. Resistance of dialyzed patients to erythropoietin. Rev Bras Hematol Hemoter. 2015;37:190–7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bamgbola OF. Pattern of resistance to erythropoietin-stimulating agents in chronic kidney disease. Kidney Int. 2011;80(5):464–74.

    Article  CAS  PubMed  Google Scholar 

  7. Macdougall IC, Cooper A. Hyporesponsiveness to erythropoietic therapy due to chronic inflammation. Eur J Clin Investig. 2005;35:32–5.

    Article  CAS  Google Scholar 

  8. Tarng D-C, et al. Erythropoietin hyporesponsiveness: from iron deficiency to iron overload. Kidney Int. 1999;55:S107–18.

    Article  Google Scholar 

  9. Rozen-Zvi B, et al. Intravenous versus oral iron supplementation for the treatment of anemia in CKD: systematic review and meta-analysis. Am J Kidney Dis. 2008;52(5):897–906.

    Article  CAS  PubMed  Google Scholar 

  10. Hasegawa T, et al. Erythropoietin hyporesponsiveness in dialysis patients: possible role of statins. Am J Nephrol. 2017;46(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  11. Lodish H, Flygare J, Chou S. From stem cell to erythroblast: regulation of red cell production at multiple levels by multiple hormones. IUBMB Life. 2010;62(7):492–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Flygare J, et al. HIF1alpha synergizes with glucocorticoids to promote BFU-E progenitor self-renewal. Blood. 2011;117(12):3435–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cizman B, et al. An exploratory study of Daprodustat in erythropoietin-Hyporesponsive subjects. Kidney Int Rep. 2018;3(4):841–50.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee HY, et al. PPAR-alpha and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal. Nature. 2015;522(7557):474–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carrancio S, et al. An activin receptor IIA ligand trap promotes erythropoiesis resulting in a rapid induction of red blood cells and haemoglobin. Br J Haematol. 2014;165(6):870–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gao X, et al. TGF-beta inhibitors stimulate red blood cell production by enhancing self-renewal of BFU-E erythroid progenitors. Blood. 2016;128(23):2637–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mies A, Platzbecker U. Increasing the effectiveness of hematopoiesis in myelodysplastic syndromes: erythropoiesis-stimulating agents and transforming growth factor-beta superfamily inhibitors. Semin Hematol. 2017;54(3):141–6.

    Article  PubMed  Google Scholar 

  18. EMA, European Medicines Agency: EMEA/H/C/004871 - Evrenzo : EPAR - Product information 2021.

  19. Dhillon S. Roxadustat: first global approval. Drugs. 2019;79(5):563–72.

    Article  CAS  PubMed  Google Scholar 

  20. Barratt J, et al. Roxadustat for the treatment of anaemia in chronic kidney disease patients not on dialysis: a phase 3, randomized, open-label, active-controlled study (DOLOMITES). Nephrology Dialysis Transplantation. 2021;36(9):1616–28.

    Article  CAS  PubMed Central  Google Scholar 

  21. Akizawa T, et al. Intermittent oral dosing of roxadustat in peritoneal dialysis chronic kidney disease patients with anemia: a randomized, phase 3, multicenter, open-label study. Ther Apher Dial. 2020;24(2):115–25.

    Article  CAS  PubMed  Google Scholar 

  22. Akizawa T, et al. A phase 3, multicenter, randomized, two-arm, open-label study of intermittent oral dosing of roxadustat for the treatment of anemia in Japanese erythropoiesis-stimulating agent-naive chronic kidney disease patients not on dialysis. Nephron. 2020;144(8):372–82.

    Article  CAS  PubMed  Google Scholar 

  23. Yan X, et al. Population pharmacokinetic and pharmacodynamic model-based comparability assessment of a recombinant human Epoetin Alfa and the biosimilar HX575. J Clin Pharmacol. 2012;52(11):1624–44.

    Article  CAS  PubMed  Google Scholar 

  24. Yan X, Ait-Oudhia S, Krzyzanski W. Erythropoietin-induced erythroid precursor pool depletion causes erythropoietin hyporesponsiveness. Pharm Res. 2013;30(4):1026–36.

    Article  CAS  PubMed  Google Scholar 

  25. Nguyen LM, et al. A quantitative systems pharmacology model of hyporesponsiveness to erythropoietin in rats. J Pharmacokinet Pharmacodyn. 2021;48(5):687–710.

    Article  CAS  PubMed  Google Scholar 

  26. Piron M, et al. Cessation of intensive treatment with recombinant human erythropoietin is followed by secondary anemia. Blood. 2001;97(2):442–8.

    Article  CAS  PubMed  Google Scholar 

  27. Kuter DJ. Biology and chemistry of thrombopoietic agents. Semin Hematol. 2010;47(3):243–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Birocchi S, et al. Thrombopoietin receptor agonists for the treatment of primary immune thrombocytopenia: a meta-analysis and systematic review. Platelets. 2021;32(2):216–26.

    Article  CAS  PubMed  Google Scholar 

  29. Al-Samkari H, Kuter DJ. Optimal use of thrombopoietin receptor agonists in immune thrombocytopenia. Therapeutic advances in hematology. 2019;10:2040620719841735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kuter DJ. The biology of thrombopoietin and thrombopoietin receptor agonists. Int J Hematol. 2013;98(1):10–23.

    Article  CAS  PubMed  Google Scholar 

  31. Mitchell WB, Bussel JB. Thrombopoietin receptor agonists: a critical review. Semin Hematol. 2015;52(1):46–52.

    Article  CAS  PubMed  Google Scholar 

  32. Debili N, et al. Characterization of a bipotent erythro-megakaryocytic progenitor in human bone marrow. Blood. 1996;88(4):1284–96.

    Article  CAS  PubMed  Google Scholar 

  33. Akashi K, et al. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000;404(6774):193–7.

    Article  CAS  PubMed  Google Scholar 

  34. Manz MG, et al. Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci. 2002;99(18):11872–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pronk CJ, et al. Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell. 2007;1(4):428–42.

    Article  CAS  PubMed  Google Scholar 

  36. Scanlon VM, et al. Single-cell tracking by time lapse imaging confirms Thrombopoietin promotes megakaryocytic-erythroid progenitor self renewal, but does not instruct lineage commitment. Blood. 2021;138:3270.

    Article  Google Scholar 

  37. Kaushansky K, et al. Thrombopoietin expands erythroid progenitors, increases red cell production, and enhances erythroid recovery after myelosuppressive therapy. J Clin Invest. 1995;96(3):1683–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lee J-W, et al. Hematologic response to Romiplostim treatment is associated with stimulation of primitive stem/progenitor cells and stromal cells in patients with aplastic Anemia refractory to immunosuppressive therapy: a 2-year interim exploratory analysis of a phase 2 clinical trial. Blood. 2017;130(Suppl 1):1167.

    Google Scholar 

  39. Olnes MJ, et al. Eltrombopag and improved hematopoiesis in refractory aplastic anemia. N Engl J Med. 2012;367(1):11–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gill H, et al. The thrombopoietin mimetics eltrombopag and romiplostim in the treatment of refractory aplastic anaemia. Br J Haematol. 2017;176(6):991–4.

    Article  CAS  PubMed  Google Scholar 

  41. Kobayashi M et al. Recombinant human thrombopoietin (Mpl ligand) enhances proliferation of erythroid progenitors. 1995;86 (7):2494–2499.

  42. Grover A, et al. Erythropoietin guides multipotent hematopoietic progenitor cells toward an erythroid fate. J Exp Med. 2014;211(2):181–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. McDonald TP, Clift RE, Cottrell MB. Large, chronic doses of erythropoietin cause thrombocytopenia in mice. Blood. 1992;80(2):352–8.

    Article  CAS  PubMed  Google Scholar 

  44. Karlsson M, Sheiner L. The importance of modeling interoccasion variability in population pharmacokinetic analyses. J Pharmacokinet Biopharm. 1993;21(6):735–50.

    Article  CAS  PubMed  Google Scholar 

  45. Perez-Ruixo JJ, et al. Pharmacokinetics and pharmacodynamics of the erythropoietin Mimetibody construct CNTO 528 in healthy subjects. Clin Pharmacokinet. 2009;48(9):601–13.

    Article  CAS  PubMed  Google Scholar 

  46. Ait-Oudhia S, Scherrmann JM, Krzyzanski W. Simultaneous pharmacokinetics/pharmacodynamics modeling of recombinant human erythropoietin upon multiple intravenous dosing in rats. J Pharmacol Exp Ther. 2010;334(3):897–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Woo S, Krzyzanski W, Jusko WJ. Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after intravenous and subcutaneous administration in rats. J Pharmacol Exp Ther. 2006;319(3):1297–306.

    Article  CAS  PubMed  Google Scholar 

  48. Yang C, Li YC, Kuter DJ. The physiological response of thrombopoietin (c-Mpl ligand) to thrombocytopenia in the rat. Br J Haematol. 1999;105(2):478–85.

    Article  CAS  PubMed  Google Scholar 

  49. Wang YM, et al. Pharmacodynamics-mediated drug disposition (PDMDD) and precursor pool lifespan model for single dose of romiplostim in healthy subjects. AAPS J. 2010;12(4):729–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Krzyzanski W, et al. Pharmacokinetic and Pharmacodynamic modeling of Romiplostim in animals. Pharm Res. 2013;30(3):655–69.

    Article  CAS  PubMed  Google Scholar 

  51. Girard P. Data transformation and parameter transformations in NONMEM. in Eleventh Meeting, Population Approach Group in Europe. 2002. p. 6–7.

  52. Krzyzanski W, et al. Pharmacokinetic and pharmacodynamic modeling of recombinant human erythropoietin after multiple subcutaneous doses in healthy subjects. Eur J Pharm Sci. 2005;26(3–4):295–306.

    Article  CAS  PubMed  Google Scholar 

  53. Posadas MA, et al. Thrombocytopenia associated with dialysis treatments. Hemodial Int. 2011;15(3):416–23.

    Article  PubMed  Google Scholar 

  54. Guo Q et al. How can i manage thrombocytopenia in hemodialysis patient? A review Therapeutic Apheresis and Dialysis. 2020;24(4), 352–360.

  55. Shin JY, et al. High c-kit expression identifies hematopoietic stem cells with impaired self-renewal and megakaryocytic bias. J Exp Med. 2014;211(2):217–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakamura-Ishizu A, et al. Thrombopoietin metabolically primes hematopoietic stem cells to megakaryocyte-lineage differentiation. Cell Rep. 2018;25(7):1772–1785 e6.

    Article  CAS  PubMed  Google Scholar 

  57. Nai-hao Y, et al. Clinical study on Xubijing injection combined with recombinant human thrombopoietinin treatment of sepsis associated thrombocytopenia [Chinese]. Drugs & Clinic. 2020;35(8):3.

    Google Scholar 

  58. Jiang J, et al. Pharmacokinetics after a subcutaneous injection of recombinant human thrombopoietin in human. Chin J Clin Pharmacol. 2001;04:284–6.

    Google Scholar 

  59. Jin F, Krzyzanski W. Pharmacokinetic model of target-mediated disposition of thrombopoietin. AAPS PharmSci. 2004;6(1):E9.

    Article  PubMed  Google Scholar 

  60. Woo S, Krzyzanski W, Jusko WJ. Target-mediated pharmacokinetic and pharmacodynamic model of recombinant human erythropoietin (rHuEPO). J Pharmacokinet Pharmacodyn. 2007;34(6):849–68.

    Article  CAS  PubMed  Google Scholar 

  61. Nguyen LM, et al. Dynamics of Erythropoietic biomarkers in response to treatment with erythropoietin in Belgrade rats. Front Pharmacol. 2018;9:316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rosebraugh M, Widness JA, Veng-Pedersen P. Receptor-based dosing optimization of erythropoietin in juvenile sheep after phlebotomy. Drug Metab Dispos. 2011;39(7):1214–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors declared no conflicts of interest.

Funding

This work was supported by the Direct Grant for Research (4054573) from The Chinese University of Hong Kong and the research grants from the Hong Kong Research Grants Council, Early Career Scheme (24103120).

Author information

Authors and Affiliations

Authors

Contributions

HZ designed the study, analyzed the data, developed the model and drafted the manuscript. HZ and XP conducted animal experiments. RW and XY designed the study. XY supervised model development and revised the manuscript.

Corresponding author

Correspondence to Xiaoyu Yan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 385 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, H., Xu, P., Wong, R.S.M. et al. A Novel Combination Therapy of Erythropoietin and Thrombopoietin to Treat Erythropoietin-Resistance anemia. Pharm Res 39, 1249–1265 (2022). https://doi.org/10.1007/s11095-022-03304-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03304-z

KEY WORDS

Navigation