Skip to main content
Log in

High frequency of inherited variants in the MEFV gene in patients with hematologic neoplasms: a genetic susceptibility?

  • Review Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Familial Mediterranean fever is an autosomal recessive disease occurring in populations originating from the Mediterranean basin. This autoinflammatory syndrome is caused by mutations in the Mediterranean FeVer (MEFV) gene. MEFV encodes a 781 amino acid protein known as pyrin. Pyrin is an important modulator of apoptosis, inflammation, and cytokine processing. In more recent pilot studies, inherited variant analysis of the MEFV gene in patients with hematologic neoplasm showed an unexpectedly high frequency of these variants in the gene. Here, we summarize the current state of knowledge of the relationship between inherited variants in the MEFV gene and hematologic neoplasms. Although no single underlying defect could be targeted in all hematologic neoplasms, it will be important to fully exploit the mechanisms underlying the neoplasm promoting role of inherited variants in MEFV. However, it is unclear how inherited variants in the MEFV gene are associated with tumor susceptibility or promotion in hematologic neoplasms. Further investigations are needed to determine the actual role of the MEFV gene in pathogenesis of these neoplasms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Musabak U, Sengul A, Oktenli C, Pay S, Yesilova Z, Kenar L, et al. Does immune activation continue during an attack-free period in familial Mediterranean fever? Clin Exp Immunol. 2004;138:526–33.

    Article  PubMed  CAS  Google Scholar 

  2. Terekeci HM, Oktenli C, Ozgurtas T, Nalbant S, Top C, Celik S, et al. Increased asymmetric dimethylarginine levels in young men with familial Mediterranean fever (FMF): is it early evidence of interaction between inflammation and endothelial dysfunction in FMF? J Rheum. 2008;35:2024–9.

    PubMed  CAS  Google Scholar 

  3. Terekeci HM, Ulusoy ER, Kucukarslan NM, Nalbant S, Oktenli C. Familial Mediterranean fever attacks do not alter functional and morphologic tissue Doppler echocardiographic parameters. Rheum Int. 2008;28:1239–43.

    Article  Google Scholar 

  4. Touitou I. The spectrum of familial Mediterranean fever (FMF) mutations. Eur J Hum Genet. 2001;9:473–83.

    Article  PubMed  CAS  Google Scholar 

  5. Centola M, Aksentijevich I, Kastner DL. The hereditary periodic fever syndromes: molecular analysis of a new family of inflammatory diseases. Hum Mol Genet. 1998;7:1581–8.

    Article  PubMed  CAS  Google Scholar 

  6. Centola M, Wood G, Frucht DM, Galon J, Arringer M, Farrell C, et al. The gene for familial Mediterranean fever, MEFV, is expressed in early leukocyte development and is regulated in response to inflammatory mediators. Blood. 2000;95:3223–31.

    PubMed  CAS  Google Scholar 

  7. Henry J, Mather IH, McDermott MF, Pontarotti P. B30.2-like domain proteins: update and new insights into a rapidly expanding family of proteins. Mol Biol Evol. 1998;15:1696–705.

    Article  PubMed  CAS  Google Scholar 

  8. Borden KL. RING fingers and B-boxes: zinc-binding protein–protein interaction domains. Biochem Cell Biol. 1998;76:351–8.

    Article  PubMed  CAS  Google Scholar 

  9. The International FMF Consortium. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell. 1997;90:797–807.

    Article  Google Scholar 

  10. Chae JJ, Aksentijevich I. Kastner DL. Advances in the understanding of familial Mediterranean fever and possibilities for targeted therapy. Br J Haematol. 2009;146:467–78.

    Article  PubMed  CAS  Google Scholar 

  11. The French FMF Consortium. A candidate gene for familial Mediterranean fever. Nature Genet. 1997;17:25–31.

    Article  Google Scholar 

  12. Koc B, Oktenli C, Bulucu F, Karadurmus N, Sanisoglu SY, Gul D. The rate of pyrin mutations in critically ill patients with systemic inflammatory response syndrome and sepsis: a pilot study. J Rheumatol. 2007;34:2070–5.

    PubMed  CAS  Google Scholar 

  13. Tidow N, Chen X, Muller C, Kawano S, Gombart AF, Fischel-Ghodsian N, et al. Hematopoietic-specific expression of MEFV, the gene mutated in familial Mediterranean fever, and subcellular localization of its corresponding protein, pyrin. Blood. 2000;95:1451–5.

    PubMed  CAS  Google Scholar 

  14. Kotone-Miyahara Y, Takaori-Kondo A, Fukunaga K, Goto M, Hayashino Y, Miki M, et al. E148Q/M694I mutation in 3 Japanese patients with familial Mediterranean fever. Int J Hematol. 2004;79:235–7.

    Article  PubMed  CAS  Google Scholar 

  15. Miyoshi T, Yamashita K, Ohno T, Izumi T, Takaori-Kondo A, Sasada M, et al. Familial Mediterranean fever gene as a possible modifier of sweet syndrome with chronic myelogenous leukemia. Acta Haematol. 2008;120:57–62.

    Article  PubMed  Google Scholar 

  16. Sasaki K, Tahara T, Mitani K. Presentation of familial Mediterranean fever in a heterozygous MEFV mutation triggered by immunosuppressive therapy for myelodysplastic syndrome. Int J Hematol. 2009;90:91–3.

    Article  PubMed  Google Scholar 

  17. Oktenli C, Sayan O, Celik S, Erikci AA, Tunca Y, Terekeci HM, et al. High frequency of MEFV gene mutations in patients with myeloid neoplasm. Int J Hematol. 2010;91:758–61.

    Article  PubMed  CAS  Google Scholar 

  18. Celik S, Erikci AA, Tunca Y, Sayan O, Terekeci HM, Umur EE, et al. The rate of MEFV gene mutations in hematolymphoid neoplasms. Int J Immunogenet. 2010;37:387–91.

    Article  PubMed  CAS  Google Scholar 

  19. Yilmaz E, Ozen S, Balci B, Duzova A, Topaloglu R, Besbas N, et al. Mutation frequency of familial Mediterranean fever and evidence for a high carrier rate in the Turkish population. Eur J Hum Genet. 2001;9:553–5.

    Article  PubMed  CAS  Google Scholar 

  20. Sayan O, Kilicaslan E, Celik S, Tangi F, Erikci AA, Ipcioglu O, et al. High frequency of inherited variants in the MEFV gene in acute lymphocytic leukemia. Indian J Hematol Blood Transfus. 2011;27:164–8.

    Article  Google Scholar 

  21. Celik S, Oktenli C, Kilicaslan E, Tangi F, Sayan O, Ozari HO, et al. Frequency of inherited variants in the MEFV gene in myelodysplastic syndrome and acute myeloid leukemia. Int J Hematol. 2012;95:285–90.

    Google Scholar 

  22. Medlej-Hashim M, Serre JL, Corbani S, Saab O, Jalkh N, Delague V, et al. Familial Mediterranean fever (FMF) in Lebanon and Jordan: a population genetics study and report of three novel mutations. Eur J Med Genet. 2004;48:412.

    Article  Google Scholar 

  23. Chen F, Beezhold K, Castranova V. Tumor promoting or tumor suppressing of NF-κB, a matter of cell context dependency. Int Rev Immunol. 2008;27:183–204.

    Article  PubMed  CAS  Google Scholar 

  24. Seshadri S, Duncan MD, Hart JM, Gavrilin MA, Wewers MD. Pyrin levels in human monocytes and monocyte-derived macrophages regulate IL-1β processing and release. J Immunol. 2007;179:1274–81.

    PubMed  CAS  Google Scholar 

  25. Bertin J, DiStefano PS. The PYRIN domain: a novel motif found in apoptosis and inflammation proteins. Cell Death Differ. 2000;7:1273–4.

    Article  PubMed  CAS  Google Scholar 

  26. Martinon F, Hofmann K, Tschopp J. The pyrin domain: a possible member of the death domainfold family implicated in apoptosis and inflammation. Curr Biol. 2001;11:R118–20.

    Article  PubMed  CAS  Google Scholar 

  27. Schaner P, Richards N, Wadhwa A, Aksentijevich I, Kastner DL, Tucker P, et al. Episodic evolution of pyrin in primates: human mutations recapitulate ancestral amino acid states. Nature Genet. 2001;27:318.

    Article  PubMed  CAS  Google Scholar 

  28. Srinivasula SM, Poyet JL, Razmara M, Datta P, Zhang Z, Alnemri ES. The PYRIN-CARD protein ASC is an activating adaptor for caspase-1. J Biol Chem. 2002;277:21119–22.

    Article  PubMed  CAS  Google Scholar 

  29. Fairbrother WJ, Gordon NC, Humke EW, O’Rourke KM, Starovasnik MA, Yin JP, et al. The PYRIN domain: a member of the death domain-fold superfamily. Protein Sci. 2001;10:1911–8.

    Article  PubMed  CAS  Google Scholar 

  30. Liepinsh E, Barbals R, Dahl E, Sharipo A, Staub E, Otting G. The death-domain fold of the ASC PYRIN domain, presenting a basis for PYRIN/PYRIN recognition. J Mol Biol. 2003;332:1155–63.

    Article  PubMed  CAS  Google Scholar 

  31. Richards N, Schaner P, Diaz A, Stuckey J, Shelden E, Wadhwa A, et al. Interaction between pyrin and the apoptotic speck protein (ASC) modulates ASC-induced apoptosis. J Biol Chem. 2001;276:39320–9.

    Article  PubMed  CAS  Google Scholar 

  32. McConnell BB. Vertino PM TMS1/ASC: The cancer connection. Apoptosis. 2004;9:5–18.

    Article  PubMed  CAS  Google Scholar 

  33. Chae JJ, Wood G, Masters SL, Richard K, Park G, Smith BJ, et al. The B30.2 domain of pyrin, the familial Mediterranean fever protein, interacts directly with caspase-1 to modulate IL-1beta production. Proc Natl Acad Sci USA. 2006;103:9982–7.

    Google Scholar 

  34. Masters SL, Yao S, Willson TA, Zhang JG, Palmer KR, Smith BJ, et al. The SPRY domain of SSB-2 adopts a novel fold that presents conserved Par-4-binding residues. Nat Struct Mol Biol. 2006;13:77–84.

    Article  PubMed  CAS  Google Scholar 

  35. Papin S, Cuenin S, Agostini L, Martinon F, Werner S, Beer HD, et al. The SPRY domain of Pyrin, mutated in familial Mediterranean fever patients, interacts with inflammasome components and inhibits proIL-1β processing. Cell Death Differ. 2007;14:1457–66.

    Article  PubMed  CAS  Google Scholar 

  36. Chae JJ, Komarow HD, Cheng J, Wood G, Raben N, Liu PP, et al. Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell. 2003;11:591–604.

    Article  PubMed  CAS  Google Scholar 

  37. Cerretti DP, Kozlosky CJ, Mosley B, Nelson N, Van Ness K, Greenstreet TA, et al. Molecular cloning of the interleukin-1β converting enzyme. Science. 1992;256:97–100.

    Article  PubMed  CAS  Google Scholar 

  38. Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B, Jankowski W, et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 2007;14:1590–604.

    Article  PubMed  CAS  Google Scholar 

  39. Kobayashi S. Hereditary periodic fever syndromes: autoinflammatory diseases. Int Med. 2005;44:694–5.

    Article  Google Scholar 

  40. Matsushita K, Takeoka M, Sagara J, Itano N, Kurose Y, Nakamura A, et al. A splice variant of ASC regulates IL-1β release and aggregates differently from intact ASC. Mediat Inflamm. 2009;287387:1.

    Article  Google Scholar 

  41. Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, et al. A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature. 1992;356:768–74.

    Article  PubMed  CAS  Google Scholar 

  42. Stehlik C, Reed JC. The PYRIN connection: novel players in innate immunity and inflammation. J Exp Med. 2004;200:551–8.

    Article  PubMed  CAS  Google Scholar 

  43. Chae JJ, Wood G, Richard K, Jaffe H, Colburn N, Masters SL, et al. The familial Mediterranean fever protein, pyrin, is cleaved by caspase-1 and activates NF-κB through its N-terminal fragment. Blood. 2008;112:1794–803.

    Article  PubMed  CAS  Google Scholar 

  44. Stehlik C, Lee SH, Dorfleutner A, Stassinopoulos A, Sagara J, Reed JC. Apoptosis-associated speck-like protein containing a caspase recruitment domain is a regulator of procaspase-1 activation. J Immunol. 2003;171:6154–63.

    PubMed  CAS  Google Scholar 

  45. Stehlik C, Fiorentino L, Dorfleutner A, Bruey JM, Ariza EM, Sagara J, et al. The PAAD/PYRIN-family protein ASC is a dual regulator of a conserved step in nuclear factor kappaB activation pathways. J Exp Med. 2002;196:1605–15.

    Article  PubMed  CAS  Google Scholar 

  46. Masumoto J, Taniguchi S, Ayukawa K, Sarvotham H, Kishino T, Niikawa N, et al. ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. J Biol Chem. 1999;274:33835–8.

    Article  PubMed  CAS  Google Scholar 

  47. Gumucio DL, Diaz A, Schaner P, Richards N, Babcock C, Schaller M, et al. Fire and ICE: the role of pyrin domain-containing proteins in inflammation and apoptosis. Clin Exp Rheumatol. 2000;20:S45–53.

    Google Scholar 

  48. Conway KE, McConnell BB, Bowring CE, Donald CD, Warren ST, Vertino PM. TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in human breast cancers. Cancer Res. 2000;60:6236–42.

    PubMed  CAS  Google Scholar 

  49. Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell. 2002;10:417–26.

    Article  PubMed  CAS  Google Scholar 

  50. Manji GA, Wang L, Geddes BJ, Brown M, Merriam S, Al-Garawi A, et al. PYPAF1, a PYRIN-containing Apaf1-like protein that assembles with ASC and regulates activation of NF-kappa B. J Biol Chem. 2002;277:11570–5.

    Article  PubMed  CAS  Google Scholar 

  51. Wang L, Manji GA, Grenier JM, Al-Garawi A, Merriam S, Lora JM, et al. PYPAF7, a novel PYRIN-containing Apaf1-like protein that regulates activation of NF-kappa B and caspase-1-dependent cytokine processing. J Biol Chem. 2002;277:29874–80.

    Article  PubMed  CAS  Google Scholar 

  52. Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature. 2004;430:213–8.

    Article  PubMed  CAS  Google Scholar 

  53. Yu JW, Wu J, Zhang Z, Datta P, Ibrahimi I, Taniguchi S, et al. Cryopyrin and pyrin activate caspase-1, but not NF-κB, via ASC oligomerization. Cell Death Differ. 2006;13:236–49.

    Article  PubMed  CAS  Google Scholar 

  54. McConnell BB, Vertino PM. Activation of a caspase-9-mediated apoptotic pathway by subcellular redistribution of the novel caspase recruitment domain protein TMS1. Cancer Res. 2000;60:6243–7.

    PubMed  CAS  Google Scholar 

  55. Keutgens A, Robert I, Viatour P, Chariot A. Deregulated NF-κB activity in haematological malignancies. Biochem Pharmacol. 2006;72:1069–80.

    Article  PubMed  CAS  Google Scholar 

  56. Siebenlist U, Brown K, Claudio E. Control of lymphocyte development by nuclear factor-κB. Nature Rev Immunol. 2005;5:435–45.

    Article  CAS  Google Scholar 

  57. Grossmann M, Metcalf D, Merryfull J, Beg A, Baltimore D, Gerondakis S. The combined absence of the transcription factors Rel and RelA leads to multiple hemopoietic cell defects. Proc Natl Acad Sci. 1999;96:11848–53.

    Article  PubMed  CAS  Google Scholar 

  58. Voll RE, Jimi E, Phillips RJ, Barber DF, Rincon M, Hayday AC, et al. NF-kappa B activation by the pre-T cell receptor serves as a selective survival signal in T lymphocyte development. Immunity. 2000;13:677–89.

    Article  PubMed  CAS  Google Scholar 

  59. Feng B, Cheng S, Pear WS, Liou HC. NF-κB inhibitor blocks B cell development at two checkpoints. Med Immunol. 2004;3:1.

    Article  PubMed  Google Scholar 

  60. Pasparakis M, Schmidt-Supprian M, Rajewsky K. IkappaB kinase signaling is essential for maintenance of mature B cells. J Exp Med. 2002;196:743–52.

    Article  PubMed  CAS  Google Scholar 

  61. Blonska M, Lin X. CARMA1-mediated NF-κB and JNK activation in lymphocytes. Immunol Rev. 2009;228:199–211.

    Article  PubMed  CAS  Google Scholar 

  62. Packham G. The role of NF-κB in lymphoid malignancies. Br J Haematol. 2008;143:3–15.

    Article  PubMed  CAS  Google Scholar 

  63. Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene. 2006;25:6680–4.

    Article  PubMed  CAS  Google Scholar 

  64. Lucas PC, McAllister-Lucas LM, Nunez G. NF-κB signaling in lymphocytes: a new cast of Characters. J Cell Sci. 2004;117:31–9.

    Article  PubMed  CAS  Google Scholar 

  65. Bassères DS, Baldwin AS. Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene. 2006;25:6817–30.

    Google Scholar 

  66. Jost PJ, Ruland J. Aberrant NF-kappaB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood. 2007;109:2700–7.

    PubMed  CAS  Google Scholar 

  67. Cilloni D, Martinelli G, Messa F, Baccarani M, Saglio G. Nuclear factor κB as a target for new drug development in myeloid malignancies. Haematologica. 2007;92:1224–9.

    Article  PubMed  CAS  Google Scholar 

  68. Braun T, Carvalho G, Fabre C, Grosjean J, Fenaux P, Kroemer G. Targeting NF-κB in hematologic malignancies. Cell Death Differ. 2006;13:748–58.

    Article  PubMed  CAS  Google Scholar 

  69. Braun T, Carvalho G, Coquelle A, Vozenin MC, Lepelley P, Hirsch F, et al. NF-kappaB constitutes a potential therapeutic target in high-risk myelodysplastic syndrome. Blood. 2006;107:1156–65.

    Article  PubMed  CAS  Google Scholar 

  70. Kordes U, Krappmann D, Heissmeyer V, Ludwig WD, Scheidereit C. Transcription factor NF-kappaB is constitutively activated in acute lymphoblastic leukemia cells. Leukemia. 2000;14:399–402.

    Article  PubMed  CAS  Google Scholar 

  71. Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA, et al. Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells. Blood. 2001;98:2301–7.

    Article  PubMed  CAS  Google Scholar 

  72. Ni H, Ergin M, Huang Q, Qin JZ, Amin HM, Martinez RL, et al. Analysis of expression of nuclear factor kappa B (NF-kappa B) in multiple myeloma: downregulation of NF-kappa B induces apoptosis. Br J Haematol. 2001;115:279–86.

    Article  PubMed  CAS  Google Scholar 

  73. Bueso-Ramos CE, Rocha FC, Shishodia S, Medeiros LJ, Kantarjian HM, Vadhan-Raj S, et al. Expression of constitutively active nuclear-κB RelA transcription factor in blasts of acute myeloid leukaemia. Hum Pathol. 2003;35:246–53.

    Article  Google Scholar 

  74. Munzert G, Kirchner D, Ottmann O, Bergmann L, Schmid RM. Constitutive NF-κB/Rel activation in Philadelphia chromosome positive (Ph+) acute lymphoblastic leukemia (ALL). Leuk Lymphoma. 2004;45:1181–4.

    Article  PubMed  CAS  Google Scholar 

  75. Bharti AC, Shishodia S, Reuben JM, Weber D, Alexanian R, Raj-Vadhan S, et al. Nuclear factor-kappaB and STAT3 are constitutively active in CD138+ cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. Blood. 2004;103:3175–84.

    Article  PubMed  CAS  Google Scholar 

  76. Reuther JY, Reuther GW, Cortez D, Pendergast AM, Baldwin AS Jr. A requirement for NF-kappaB activation in Bcr-Abl mediated transformation. Genes Dev. 1998;12:968–81.

    Article  PubMed  CAS  Google Scholar 

  77. Kirchner D, Duyster J, Ottmann O, Schmid RM, Bergmann L, Munzert G. Mechanisms of Bcr-Abl-mediated NF-kappB/Rel activation. Exp Hematol. 2003;31:504–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors of the present work have no interests, which might be perceived as posing a conflict or bias.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cagatay Oktenli.

About this article

Cite this article

Oktenli, C., Celik, S. High frequency of inherited variants in the MEFV gene in patients with hematologic neoplasms: a genetic susceptibility?. Int J Hematol 95, 380–385 (2012). https://doi.org/10.1007/s12185-012-1061-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-012-1061-6

Keywords

Navigation