Skip to main content
Log in

A caspase 8-based suicide switch induces apoptosis in nanobody-directed chimeric receptor expressing T cells

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

In accordance with the two-step hypothesis of T cell activation and the observation that stimulation through the T cell receptor (TCR) alone may lead to anergy, we focused on the introduction of co-stimulatory signaling to this type of receptors to achieve optimal activation. Enhanced mRNA and cell surface receptor expression via the co-stimulatory gene fragment (OX40) was confirmed by RT-PCR and flow cytometry. Inclusion of the OX40 co-stimulatory signaling region in series with the TCR led to enhanced antigen-induced IL-2 production after stimulation by MUC1-expressing cancer cell lines as compared to the chimeric receptor without OX40. Moreover, with the aim of maintaining high efficiency, while providing a means of controlling any possible unwanted proliferation in vivo, a regulation system was used. This controls the dimerization of a membrane-bound caspase 8 protein. Toward that goal, pFKC8 and CAR constructs were co-transfected into Jurkat cells, and the level of apoptosis was measured. 24 h after addition of the dimerizer, a 91% decrease in transfected cells was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CAR:

Chimeric antigen receptor

CH2-CH3-hinge:

Sequences coding for CH2-CH3-hinge regions of human IgG3

CH2-CH3-hinge–hinge:

Sequences coding for CH2-CH3-hinge-hinge regions of human IgG3

CD28:

cDNA coding for the transmembrane and intracellular part of CD28 (153–220 aa)

CD3ζ:

cDNA coding for the intracellular domain of CD3ζ (52–164 aa)

ELISA:

Enzyme-linked immunosorbant assay

IgG:

Immunoglobulin G

LB:

Luria-Bertani

MW:

Molecular weight

Nb:

Nanobody

PBS:

Phosphate buffered saline

pFKC8:

pC4-MFv2E plasmid containing myristoylation signal-modified FKBP12-modified FKBP12-caspase 8 cassette

pZCHHN:

CD3ζ-CD28-(CH2-CH3-hinge–hinge)-Nb cassette inserted in pCDNA3.1/Hygro(+) plasmid

pZCHN:

CD3ζ- CD28-(CH2-CH3-hinge)-Nb cassette inserted in pCDNA3.1/Hygro(+) plasmid

pZOCHHN:

CD3ζ-OX40-CD28-(CH2-CH3-hinge–hinge)-Nb cassette inserted in pCDNA3.1/Hygro(+) plasmid

pZOCHN:

CD3ζ-OX40-CD28-(CH2-CH3-hinge)-Nb cassette inserted in pCDNA3.1/Hygro(+) plasmid

scFv:

Single-chain fragment variable

TAA:

Tumour-associated antigen

VHH:

Variable domain from a camel heavy chain antibody

References

  1. June CH. Adoptive T cell therapy for cancer in the clinic. J Clin Invest. 2007;117:1466–76.

    Article  PubMed  CAS  Google Scholar 

  2. Leen AM, Rooney CM, Foster AE. Improving T cell therapy for cancer. Annu Rev Immunol. 2007;25:243–65.

    Article  PubMed  CAS  Google Scholar 

  3. Biagi E, Marin V, Giordano Attianese GMP, Dander E, D’Amico G, Biondi A. Chimeric T-cell receptors: new challenges for targeted immunotherapy in hematologic malignancies. Haematologica. 2007;92:381–8.

    Article  PubMed  Google Scholar 

  4. Grossi JA, Raulet DH, Allison JP. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature. 1992;356:607–9.

    Article  Google Scholar 

  5. Liebowitz DN, Lee KP, June CH. Costimulatory approaches to adoptive immunotherapy. Curr Opin Oncol. 1998;10:533–41.

    Article  PubMed  CAS  Google Scholar 

  6. Finney HM, Akbar AN, Lawson ADG. Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR chain. J Immunol. 2004;172:104–13.

    PubMed  CAS  Google Scholar 

  7. Hombach A, Sent D, Schneider C, Heuser C, Koch D, Pohl C, et al. T-cell activation by recombinant receptors: CD28 costimulation is required for interleukin 2 secretion and receptor-mediated T-cell proliferation but does not affect receptor-mediated target cell lysis. Cancer Res. 2001;61:1976–82.

    PubMed  CAS  Google Scholar 

  8. Watts TH, DeBenedettet MA. T cell co-stimulatory molecules other than CD28. Curr Opin Immunol. 1999;11:286–93.

    Article  PubMed  CAS  Google Scholar 

  9. Hombach A, Abken H. Costimulation tunes tumor-specific activation of redirected T cells in adoptive immunotherapy. Cancer Immunol Immunother. 2007;56:731–7.

    Article  PubMed  Google Scholar 

  10. Gramaglia I, Jember A, Pippig SD, Weinberg AD, Killeen N, Croft M. The OX40 costimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. J Immunol. 2000;165:3043–50.

    PubMed  CAS  Google Scholar 

  11. Pulè MA, Straathof KC, Dotti G, Heslop HE, Rooney CM, Brenner MK. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther. 2005;12:933–41.

    Article  PubMed  Google Scholar 

  12. Iri-Sofla FJ, Rahbarizadeh F, Ahmadvand D, Rasaee MJ. Nanobody-based chimeric receptor gene integration in Jurkat cells mediated by PhiC31 integrase. Exp Cell Res. 2011;317:2630–41.

    Article  PubMed  CAS  Google Scholar 

  13. Casucci M, Bondanza A. Suicide gene therapy to increase the safety of chimeric antigen receptor-redirected T lymphocytes. J Cancer. 2011;2:378–82.

    Article  PubMed  CAS  Google Scholar 

  14. Straathof KC, Pulè MA, Yotnda P, Dotti G, Vanin EF, Brenner MK, et al. An inducible caspase 9 safety switch for T-cell therapy. Blood. 2005;105:4247–54.

    Article  PubMed  CAS  Google Scholar 

  15. Cai X, Zhou J, Chang Y, Sun X, Li P, Lin J. Targeting gene therapy for hepatocarcinoma cells with the E. coli purine nucleoside phosphorylase suicide gene system directed by a chimeric [alpha]-fetoprotein promoter. Cancer Lett. 2008;264:71–82.

    Article  PubMed  CAS  Google Scholar 

  16. Bonini C, Ferrari G, Verzeletti S, Servida P, Zappone E, Ruggieri L, et al. HSV-TK gene transfer into donor lymphocytes for control of allogeneic graft-versus-leukemia. Science. 1997;276:1719–24.

    Article  PubMed  CAS  Google Scholar 

  17. Carlotti F, Zaldumbide A, Martin P, Boulukos KE, Hoeben RC, Pognonec P. Development of an inducible suicide gene system based on human caspase 8. Cancer Gene Ther. 2005;12:627–39.

    Article  PubMed  CAS  Google Scholar 

  18. Grutter MG. Caspases: key players in programmed cell death. Curr Opin Struct Biol. 2000;10:649–55.

    Article  PubMed  CAS  Google Scholar 

  19. Wong ML, Medrano JF. Real-time PCR for mRNA quantitation. Biotechniques. 2005;39:75–85.

    Article  PubMed  CAS  Google Scholar 

  20. Park JH, Brentjens RJ. Adoptive immunotherapy for B-cell malignancies with autologous chimeric antigen receptor modified tumor targeted T cells. Discov Med. 2010;9:277–88.

    PubMed  Google Scholar 

  21. Tey SK, Bollard CM, Heslop HE. Adoptive T-cell transfer in cancer immunotherapy. Immunol Cell Biol. 2006;84:281–9.

    Article  PubMed  CAS  Google Scholar 

  22. Lo ASY, Ma Q, Liu DL, Junghans RP. Anti-GD3 chimeric sFv-CD28/T-cell receptor designer T cells for treatment of metastatic melanoma and other neuroectodermal tumors. Clin Cancer Res. 2010;16:2769–80.

    Article  PubMed  CAS  Google Scholar 

  23. Maher J, Brentjens RJ, Gunset G, Rivière I, Sadelain M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCR/CD28 receptor. Nat Biotechnol. 2002;20:70–5.

    Article  PubMed  CAS  Google Scholar 

  24. Chmielewski M, Hombach AA, Abken H. CD28 cosignalling does not affect the activation threshold in a chimeric antigen receptor-redirected T-cell attack. Gene Ther. 2010;18:62–72.

    Article  PubMed  Google Scholar 

  25. Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor–modified T cells in lymphoma patients. J Clin Invest. 2011;121:1822–6.

    Article  PubMed  CAS  Google Scholar 

  26. Rahbarizadeh F, Rasaee MJ, Forouzandeh M, Allameh A, Sarrami R, Nasiry H, et al. The production and characterization of novel heavy-chain antibodies against the tandem repeat region of MUC1 mucin. Immunol Invest. 2005;34:431–52.

    Article  PubMed  CAS  Google Scholar 

  27. Rahbarizadeh F, Rasaee MJ, Forouzandeh-Moghadam M, Allameh AA. High expression and purification of the recombinant camelid anti-MUC1 single domain antibodies in Escherichia coli. Protein Expr Purif. 2005;44:32–8.

    Article  PubMed  CAS  Google Scholar 

  28. Song DG, Ye Q, Carpenito C, Poussin M, Wang LP, Ji C, et al. In vivo persistence, tumor localization, and antitumor activity of car-engineered T cells is enhanced by costimulatory signaling through CD137 (4–1BB). Cancer Res. 2011;71:4617–27.

    Article  PubMed  CAS  Google Scholar 

  29. Ramos CA, Savoldo B, Liu E, Bollard CM, Carrum G, Kamble RT, et al. Effect of a co-stimulatory endodomain on the performance of T cells expressing a chimeric antigen receptor directed at CD19 in patients with relapsed/refractory B-cell malignancies. Biol Blood Marrow TR. 2011;17:213–4.

    Article  Google Scholar 

  30. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–8.

    Article  PubMed  CAS  Google Scholar 

  31. Buning H, Uckert W, Cichutek K, Hawkins RE, Abken H. Do CARs need a driver license? Adoptive cell therapy with chimeric antigen receptor-redirected T cells caused serious adverse events. Hum Gene Ther. 2010;9:1039–42.

    Article  Google Scholar 

  32. Thomis DC, Marktel S, Bonini C, Traversari C, Gilman M, Bordignon C, et al. A Fas-based suicide switch in human T cells for the treatment of graft-versus-host disease. Blood. 2001;97:1249.

    Google Scholar 

  33. Spencer DM, Belshaw PJ, Chen L, Ho SN, Randazzo F, Crabtree GR, et al. Functional analysis of Fas signaling in vivo using synthetic inducers of dimerization. Curr Biol. 1996;6:839–47.

    Article  PubMed  CAS  Google Scholar 

  34. Clackson T, Yang W, Rozamus LW, Hatada M, Amara JF, Rollins CT, et al. Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci USA. 1998;95:10437.

    Google Scholar 

  35. MacCorkle RA, Freeman KW, Spencer DM. Synthetic activation of caspases: artificial death switches. Proc Natl Acad Sci USA. 1998;95:3655.

    Article  PubMed  CAS  Google Scholar 

  36. Pajvani UB, Trujillo ME, Combs TP, Iyengar P, Jelicks L, Roth KA, et al. Fat apoptosis through targeted activation of caspase 8: a new mouse model of inducible and reversible lipoatrophy. Nat Med. 2005;11:797–804.

    Article  PubMed  CAS  Google Scholar 

  37. Martin DA, Siegel RM, Zheng L, Lenardo MJ. Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACH 1) death signal. J Biol Chem. 1998;273:4345–9.

    Article  PubMed  CAS  Google Scholar 

  38. Traversari C, Marktel S, Magnani Z, Mangia P, Russo V, Ciceri F, et al. The potential immunogenicity of the TK suicide gene does not prevent full clinical benefit associated with the use of TK-transduced donor lymphocytes in HSCT for hematologic malignancies. Blood. 2007;109:4708–15.

    Article  PubMed  CAS  Google Scholar 

  39. Portsmouth D, Hlavaty J, Renner M. Suicide genes for cancer therapy. Mol Aspects Med. 2007;28:4–41.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Oliver Jey Broom (KIPA—Krahbichler Intellectual Property Advisors AB, SE-251 10 Helsingborg, Sweden) for his critical language revision of the manuscript. This work was supported by Faculty of Medical Sciences and the Biotechnology committee of Tarbiat Modares University (TMU-88-8-67), Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Rahbarizadeh.

About this article

Cite this article

Khaleghi, S., Rahbarizadeh, F., Ahmadvand, D. et al. A caspase 8-based suicide switch induces apoptosis in nanobody-directed chimeric receptor expressing T cells. Int J Hematol 95, 434–444 (2012). https://doi.org/10.1007/s12185-012-1037-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-012-1037-6

Keywords

Navigation