Skip to main content
Log in

Systemerkrankung Herzinsuffizienz

Heart failure is a systemic disease

  • Schwerpunkt
  • Published:
Die Kardiologie Aims and scope

Zusammenfassung

Die Herzinsuffizienz betrifft ca. 4 % der deutschen Bevölkerung, ist der häufigste Grund für einen stationären Krankenhausaufenthalt und birgt eine hohe Sterblichkeit und Morbidität. Die Prävalenz der Herzinsuffizienz nimmt mit steigendem Lebensalter zu, und ältere Patienten weisen besonders häufig auch Erkrankungen anderer Organsysteme auf, wie chronische Niereninsuffizienz, Anämie, Adipositas und Typ-2-Diabetes mellitus. Die Zahl der Komorbiditäten hat hierbei einen erheblichen Einfluss auf die Prognose. Wir betrachten daher die Herzinsuffizienz nicht mehr nur als eine isolierte Organerkrankung, sondern als eine Systemerkrankung, bei der das Herz in Kommunikation mit anderen Organen steht. Diese Kommunikation wird insbesondere durch neuroendokrine Aktivierung, Inflammation und Metabolismus bewerkstelligt. Während unsere bisherigen Therapien v. a. auf die neuroendokrine Aktivierung abzielten, so sind neuere Ansätze auf Metabolismus und Inflammation ausgerichtet. Die klinischen Ergebnisse solcher Interventionen zeigen, dass hierdurch (je nach Ansatz) nicht nur das Herz, sondern auch die Niere, metabolische und ggf. auch Tumorerkrankungen günstig beeinflusst werden können. Dies verdeutlicht, dass die Behandlung von Patienten mit Herzinsuffizienz ein interdisziplinärer Ansatz ist, bei dem Kardiologen mit anderen Disziplinen der inneren Medizin eng zusammenarbeiten sollten. In der vorliegenden Arbeit fokussieren wir auf das kardiorenal-metabolische System bei Patienten mit Herzinsuffizienz und welchen Einfluss therapeutische Interventionen in diesem Bereich haben.

Abstract

Heart failure affects approximately 4% of the German population, is the most common reason for hospitalization and is associated with a high morbidity and mortality. The prevalence increases with age, and older patients also frequently have diseases of other organ systems, such as chronic kidney disease, anemia, obesity, and type 2 diabetes mellitus. The number of comorbidities has a significant impact on the prognosis. Therefore, heart failure is no longer regarded as an isolated organ disease but as a systemic disease in which the heart is in communication with other organs. This communication is governed in particular through neuroendocrine activation, inflammation and metabolism. While previous treatments mainly focused on the neuroendocrine activation, more recent approaches target metabolism and inflammation. Depending on the approach, the clinical results of these interventions show that not only the heart, but also the kidneys, metabolic and possibly also tumor diseases can be favorably influenced. This illustrates that the treatment of heart failure is an interdisciplinary approach, in which cardiologists should work closely with other disciplines of internal medicine. The present review focuses on the cardiorenal metabolic system in patients with heart failure, and how therapeutic interventions targeting this system impact the generation and course heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Angermann CE, Santos-Gallego CG, Requena-Ibanez JA, Sehner S, Zeller T, Gerhardt LMS, Maack C, Sanz J, Frantz S, Fuster V et al (2023) Empagliflozin effects on iron metabolism as a possible mechanism for improved clinical outcomes in non-diabetic patients with systolic heart failure. Nat Cardiovasc Res 2:1032–1043

    Article  Google Scholar 

  2. Adamson C, Kondo T, Jhund PS, de Boer RA, Cabrera HJW, Claggett B, Desai AS, Alcocer Gamba MA, Al Habeeb W, Hernandez AF et al (2022) Dapagliflozin for heart failure according to body mass index: the DELIVER trial. Eur Heart J 43:4406–4417. https://doi.org/10.1093/eurheartj/ehac481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anker SD, Butler J, Filippatos G et al (2021) Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 385:1451–1461. https://doi.org/10.1056/NEJMoa2107038

    Article  CAS  PubMed  Google Scholar 

  4. Aune D, Sen A, Norat T et al (2016) Body mass index, abdominal fatness, and heart failure incidence and mortality: a systematic review and dose–response meta-analysis of prospective studies. Circulation 133:639–649. https://doi.org/10.1161/CIRCULATIONAHA.115.016801

    Article  PubMed  Google Scholar 

  5. Bertero E, Dudek J, Cochain C et al (2022) Immuno-metabolic interfaces in cardiac disease and failure. Cardiovasc Res 118:37–52. https://doi.org/10.1093/cvr/cvab036

    Article  CAS  PubMed  Google Scholar 

  6. Bouabdallaoui N, Tardif J‑C, Waters DD et al (2020) Time-to-treatment initiation of colchicine and cardiovascular outcomes after myocardial infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). Eur Heart J 41:4092–4099. https://doi.org/10.1093/eurheartj/ehaa659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cherney DZI, Perkins BA, Soleymanlou N et al (2014) Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 129:587–597. https://doi.org/10.1161/CIRCULATIONAHA.113.005081

    Article  CAS  PubMed  Google Scholar 

  8. Conrad N, Judge A, Tran J et al (2018) Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals. Lancet 391:572–580. https://doi.org/10.1016/S0140-6736(17)32520-5

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ferreira JP, Zannad F, Butler J et al (2022) Empagliflozin and serum potassium in heart failure: an analysis from EMPEROR-Pooled. Eur Heart J. https://doi.org/10.1093/eurheartj/ehac306

    Article  PubMed  PubMed Central  Google Scholar 

  10. Filippatos G, Anker SD, Agarwal R et al (2022) Finerenone reduces risk of incident heart failure in patients with chronic kidney disease and type 2 diabetes: analyses from the FIGARO-DKD trial. Circulation 145:437–447. https://doi.org/10.1161/CIRCULATIONAHA.121.057983

    Article  CAS  PubMed  Google Scholar 

  11. Filippatos G, Anker SD, Böhm M et al (2016) A randomized controlled study of finerenone vs. eplerenone in patients with worsening chronic heart failure and diabetes mellitus and/or chronic kidney disease. Eur Heart J 37:2105–2114. https://doi.org/10.1093/eurheartj/ehw132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ghanim H, Abuaysheh S, Hejna J et al (2020) Dapagliflozin suppresses Hepcidin and increases erythropoiesis. J Clin Endocrinol Metab 105:e1056–e1063. https://doi.org/10.1210/clinem/dgaa057

    Article  Google Scholar 

  13. Gilbert RE, Krum H (2015) Heart failure in diabetes: effects of anti-hyperglycaemic drug therapy. Lancet 385:2107–2117. https://doi.org/10.1016/S0140-6736(14)61402-1

    Article  CAS  PubMed  Google Scholar 

  14. Heerspink HJL, Stefánsson BV, Correa-Rotter R et al (2020) Dapagliflozin in patients with chronic kidney disease. N Engl J Med 383:1436–1446. https://doi.org/10.1056/NEJMoa2024816

    Article  CAS  PubMed  Google Scholar 

  15. Heidenreich PA, Bozkurt B, Aguilar D et al (2022) 2022 AHA/ACC/HFSA guideline for the management of heart failure: a report of the American college of cardiology/American heart association joint committee on clinical practice guidelines. Circulation. https://doi.org/10.1161/CIR.0000000000001063

    Article  PubMed  PubMed Central  Google Scholar 

  16. Homilius C, Seefeldt JM, Axelsen JS et al (2023) Ketone body 3‑hydroxybutyrate elevates cardiac output through peripheral vasorelaxation and enhanced cardiac contractility. Basic Res Cardiol 118:37. https://doi.org/10.1007/s00395-023-01008-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jankowski J, Floege J, Fliser D et al (2021) Cardiovascular disease in chronic kidney disease: pathophysiological insights and therapeutic options. Circulation 143:1157–1172. https://doi.org/10.1161/CIRCULATIONAHA.120.050686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kosiborod MN, Abildstrøm SZ, Borlaug BA et al (2023) Semaglutide in patients with heart failure with preserved ejection fraction and obesity. N Engl J Med 389:1069–1084. https://doi.org/10.1056/NEJMoa2306963

    Article  CAS  PubMed  Google Scholar 

  19. Kristensen SL, Rørth R, Jhund PS et al (2019) Cardiovascular, mortality, and kidney outcomes with GLP‑1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol 7:776–785. https://doi.org/10.1016/S2213-8587(19)30249-9

    Article  CAS  PubMed  Google Scholar 

  20. Lam CSP, Solomon SD (2021) Classification of heart failure according to ejection fraction. J Am Coll Cardiol 77:3217–3225. https://doi.org/10.1016/j.jacc.2021.04.070

    Article  PubMed  Google Scholar 

  21. Lincoff AM, Brown-Frandsen K, Colhoun HM et al (2023) Semaglutide and cardiovascular outcomes in obesity without diabetes. N Engl J Med 389:2221–2232. https://doi.org/10.1056/NEJMoa2307563

    Article  CAS  PubMed  Google Scholar 

  22. McDonagh TA, Metra M, Adamo M et al (2021) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 42:3599–3726. https://doi.org/10.1093/eurheartj/ehab368

    Article  CAS  PubMed  Google Scholar 

  23. McDonagh TA, Metra M, Adamo M et al (2023) 2023 Focused Update of the 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 44:3627–3639. https://doi.org/10.1093/eurheartj/ehad195

    Article  CAS  PubMed  Google Scholar 

  24. McMurray JJV, Packer M, Desai AS et al (2014) Angiotensin–Neprilysin inhibition versus Enalapril in heart failure. N Engl J Med 371:993–1004. https://doi.org/10.1056/NEJMoa1409077

    Article  CAS  PubMed  Google Scholar 

  25. McMurray JJV, Solomon SD, Inzucchi SE et al (2019) Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 381:1995–2008. https://doi.org/10.1056/NEJMoa1911303

    Article  CAS  PubMed  Google Scholar 

  26. Muskiet MHA, Tonneijck L, Smits MM et al (2017) GLP‑1 and the kidney: from physiology to pharmacology and outcomes in diabetes. Nat Rev Nephrol 13:605–628. https://doi.org/10.1038/nrneph.2017.123

    Article  CAS  PubMed  Google Scholar 

  27. Nickel AG, von Hardenberg A, Hohl M et al (2015) Reversal of Mitochondrial transhydrogenase causes oxidative stress in heart failure. Cell Metab 22:472–484. https://doi.org/10.1016/j.cmet.2015.07.008

    Article  CAS  PubMed  Google Scholar 

  28. Obokata M, Reddy YNV, Pislaru SV et al (2017) Evidence supporting the existence of a distinct obese phenotype of heart failure with preserved ejection fraction. Circulation 136:6–19. https://doi.org/10.1161/CIRCULATIONAHA.116.026807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Packer M, Anker SD, Butler J et al (2020) Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 383:1413–1424. https://doi.org/10.1056/NEJMoa2022190

    Article  CAS  PubMed  Google Scholar 

  30. Pandey A, LaMonte M, Klein L et al (2017) Relationship between physical activity, body mass index, and risk of heart failure. J Am Coll Cardiol 69:1129–1142. https://doi.org/10.1016/j.jacc.2016.11.081

    Article  PubMed  PubMed Central  Google Scholar 

  31. Pi-Sunyer X, Astrup A, Fujioka K et al (2015) A randomized, controlled trial of 3.0 mg of Liraglutide in weight management. N Engl J Med 373:11–22. https://doi.org/10.1056/NEJMoa1411892

    Article  CAS  PubMed  Google Scholar 

  32. Ridker PM, Everett BM, Thuren T et al (2017) Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N Engl J Med 377:1119–1131. https://doi.org/10.1056/NEJMoa1707914

    Article  CAS  PubMed  Google Scholar 

  33. Sano M, Takei M, Shiraishi Y, Suzuki Y (2016) Increased Hematocrit during sodium-glucose Cotransporter 2 inhibitor therapy indicates recovery of Tubulointerstitial function in diabetic kidneys. J Clin Med Res 8:844–847. https://doi.org/10.14740/jocmr2760w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schmid T (2015) Costs of treating cardiovascular events in Germany: a systematic literature review. Health Econ Rev 5:27. https://doi.org/10.1186/s13561-015-0063-5

    Article  PubMed  PubMed Central  Google Scholar 

  35. Solomon SD, Dobson J, Pocock S et al (2007) Influence of nonfatal hospitalization for heart failure on subsequent mortality in patients with chronic heart failure. Circulation 116:1482–1487. https://doi.org/10.1161/CIRCULATIONAHA.107.696906

    Article  PubMed  Google Scholar 

  36. Solomon SD, McMurray JJV, Anand IS et al (2019) Angiotensin–Neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med 381:1609–1620. https://doi.org/10.1056/NEJMoa1908655

    Article  CAS  PubMed  Google Scholar 

  37. Solomon SD, McMurray JJV, Claggett B et al (2022) Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N Engl J Med 387:1089–1098. https://doi.org/10.1056/NEJMoa2206286

    Article  PubMed  Google Scholar 

  38. Störk S, Handrock R, Jacob J et al (2017) Epidemiology of heart failure in Germany: a retrospective database study. Clin Res Cardiol 106:913–922. https://doi.org/10.1007/s00392-017-1137-7

    Article  PubMed  PubMed Central  Google Scholar 

  39. Störk S, Hense HW, Zentgraf C et al (2008) Pharmacotherapy according to treatment guidelines is associated with lower mortality in a community-based sample of patients with chronic heart failure A prospective cohort study. European J of Heart Fail 10:1236–1245. https://doi.org/10.1016/j.ejheart.2008.09.008

    Article  CAS  Google Scholar 

  40. Streng KW, Nauta JF, Hillege HL et al (2018) Non-cardiac comorbidities in heart failure with reduced, mid-range and preserved ejection fraction. Int J Cardiol 271:132–139. https://doi.org/10.1016/j.ijcard.2018.04.001

    Article  PubMed  Google Scholar 

  41. Urbich M, Globe G, Pantiri K et al (2020) A systematic review of medical costs associated with heart failure in the USA (2014–2020). PharmacoEconomics 38:1219–1236. https://doi.org/10.1007/s40273-020-00952-0

    Article  PubMed  PubMed Central  Google Scholar 

  42. Vaduganathan M, Docherty KF, Claggett BL et al (2022) SGLT2 inhibitors in patients with heart failure: a comprehensive meta-analysis of five randomised controlled trials. Lancet 400:757–767. https://doi.org/10.1016/S0140-6736(22)01429-5

    Article  CAS  PubMed  Google Scholar 

  43. Van Bommel EJM, Muskiet MHA, Van Baar MJB et al (2020) The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than pre-glomerular vasoconstriction in metformin-treated patients with type 2 diabetes in the randomized, double-blind RED trial. Kidney Int 97:202–212. https://doi.org/10.1016/j.kint.2019.09.013

    Article  CAS  PubMed  Google Scholar 

  44. Van Veldhuisen SL, Gorter TM, Van Woerden G et al (2022) Bariatric surgery and cardiovascular disease: a systematic review and meta-analysis. Eur Heart J 43:1955–1969. https://doi.org/10.1093/eurheartj/ehac071

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wanner C, Inzucchi SE, Lachin JM et al (2016) Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med 375:323–334. https://doi.org/10.1056/NEJMoa1515920

    Article  CAS  PubMed  Google Scholar 

  46. Zelniker TA, Wiviott SD, Raz I et al (2019) SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet 393:31–39. https://doi.org/10.1016/S0140-6736(18)32590-X

    Article  CAS  PubMed  Google Scholar 

  47. Zinman B, Wanner C, Lachin JM et al (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128. https://doi.org/10.1056/NEJMoa1504720

    Article  CAS  PubMed  Google Scholar 

  48. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). Revista Española de Cardiología (English Edition) 73:404. https://doi.org/10.1016/j.rec.2020.04.007

  49. Lee PC, Ganguly S, Goh SY (2018) Weight loss associated with sodium-glucose cotransporter-2 inhibition: a review of evidence and underlying mechanisms. Obes Rev 19:1630–1641

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Maack.

Ethics declarations

Interessenkonflikt

M. Christa: Vortragshonorar von Pfizer, Weiterbildungs-Grants von Abiomed und Abbott. Alles ohne direkten Bezug zur hier vorliegenden Publikation. C. Maack: Referentenhonorare von Astra, Bayer, Boehringer Ingelheim, BMS, Berlin Chemie, Servier, Novartis, Novo Nordisk, Pfizer. Beratertätigkeiten für Servier, Boehringer Ingelheim, AstraZeneca und Amgen.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Hinweis des Verlags

Der Verlag bleibt in Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutsadressen neutral.

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christa, M., Maack, C. Systemerkrankung Herzinsuffizienz. Kardiologie 18, 135–142 (2024). https://doi.org/10.1007/s12181-024-00677-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12181-024-00677-w

Schlüsselwörter

Keywords

Navigation