Skip to main content
Log in

Schlüsselrolle des Ca2+ in der Herzinsuffizienz und mögliche neue therapeutische Ansatzpunkte

The key role of Ca2+ in heart failure und possible new options for treatment

  • Übersichten
  • Published:
Der Kardiologe Aims and scope

Zusammenfassung

Bei chronischer Herzinsuffizienz kommt es unabhängig von der jeweiligen Ätiologie zu ausgeprägten Alterationen des zellulären Ca2+-Stoffwechsels und einer daraus resultierenden Störung der elektromechanischen Kopplung. Es findet sich eine Erniedrigung der systolischen Ca2+-Transienten bei gleichzeitiger Erhöhung der diastolischen Ca2+-Konzentration. Wissenschaftliche Untersuchungen der letzten Jahre konnten diese Veränderungen mit einer verminderten Expression und Aktivität der Ca2+-ATPase (SERCA2a) des sarkoplasmatischen Retikulums (SR) sowie einer vermehrten diastolischen Undichtigkeit der Ryanodinrezeptoren des SR in Verbindung bringen. Außerdem ist der bei Herzinsuffizienz erhöhte späte Na+-Strom (late INa) an der Na+-Überladung der Zelle beteiligt und behindert damit die Ca2+-Elimination aus dem Zytosol durch den Na+/Ca2+-Austauscher (NCX). Dieser Übersichtsbeitrag erläutert die entscheidende Rolle der veränderten Ca2+-Homöostase in der Pathogenese der Herzinsuffizienz und illustriert hierbei v. a. neue Erkenntnisse über zugrunde liegende Pathomechanismen. Außerdem werden daraus abgeleitete neue Therapiemöglichkeiten zusammengefasst und deren Entwicklungsstand und Potenzial hinsichtlich ihrer klinischen Anwendung erörtert.

Abstract

Chronic heart failure is characterized by distinct alterations in intracellular Ca2+ homeostasis leading to perturbations of excitation-contraction coupling. Systolic Ca2+ transients are typically lowered with diastolic Ca2+ levels being increased. Recent studies showed that these alterations of Ca2+ cycling are tightly linked to a reduced expression and activity of SERCA2a in heart failure as well as to an increased diastolic leakage of ryanodine receptors. In addition to that, the late inward current for Na+ ions (late INa) is increased and leads to an intracellular accumulation of Na+. The driving force for the Na+/Ca2+ exchanger (NCX) is thus reduced, compromising diastolic Ca2+ elimination out of the cytosol. This review article outlines the decisive role of Ca2+ cycling alterations in the pathogenesis of heart failure and focuses on new insights into underlying pathomechanisms. Furthermore, new therapeutic options are summarized and the stage of development with regard to their clinical application is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6

Literatur

  1. Hunt SA (2005) ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure). J Am Coll Cardiol 46(6):e1–82

    Article  PubMed  Google Scholar 

  2. Roger VL (2010) The heart failure epidemic. Int J Environ Res Public Health 7(4):1807–1830

    Article  PubMed  Google Scholar 

  3. Braunwald E (1997) Shattuck lecture – cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. N Engl J Med 337(19):1360–1369

    Article  PubMed  CAS  Google Scholar 

  4. Dunlay SM, Weston SA, Jacobsen SJ, Roger VL (2009) Risk factors for heart failure: a population-based case-control study. Am J Med 122(11):1023–1028

    Article  PubMed  Google Scholar 

  5. Radford MJ, Arnold JM, Bennett SJ et al (2005) ACC/AHA key data elements and definitions for measuring the clinical management and outcomes of patients with chronic heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards (Writing Committee to Develop Heart Failure Clinical Data Standards): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Failure Society of America. Circulation 112(12):1888–1916

    Article  PubMed  Google Scholar 

  6. Bursi F, Weston SA, Redfield MM et al (2006) Systolic and diastolic heart failure in the community. JAMA 296(18):2209–2216

    Article  PubMed  CAS  Google Scholar 

  7. Mosterd A, Cost B, Hoes AW et al (2001) The prognosis of heart failure in the general population: the Rotterdam Study. Eur Heart J 22(15):1318–1327

    Article  PubMed  CAS  Google Scholar 

  8. Bohm M (2002) Pathophysiology of heart failure today. Herz 27(2):75–91

    Article  PubMed  Google Scholar 

  9. Mulieri LA, Hasenfuss G, Leavitt B et al (1992) Altered myocardial force-frequency relation in human heart failure. Circulation 85(5):1743–1750

    PubMed  CAS  Google Scholar 

  10. Lehnart SE, Maier LS, Hasenfuss G (2009) Abnormalities of calcium metabolism and myocardial contractility depression in the failing heart. Heart Fail Rev 14(4):213–224

    Article  PubMed  CAS  Google Scholar 

  11. Foo RS, Mani K, Kitsis RN (2005) Death begets failure in the heart. J Clin Invest 115(3):565–571

    PubMed  CAS  Google Scholar 

  12. Segev A, Mekori YA (1999) The Cardiac Insufficiency Bisoprolol Study II. Lancet 353(9161):1361

    Article  PubMed  CAS  Google Scholar 

  13. Pitt B, Zannad F, Remme WJ et al (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341(10):709–717

    Article  PubMed  CAS  Google Scholar 

  14. Swedberg K, Komajda M, Bohm M et al (2010) Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 376(9744):875–885

    Article  PubMed  CAS  Google Scholar 

  15. Neef S, Maier LS (2007) Remodeling of excitation-contraction coupling in the heart: inhibition of sarcoplasmic reticulum Ca(2+) leak as a novel therapeutic approach. Curr Heart Fail Rep 4(1):11–17

    Article  PubMed  CAS  Google Scholar 

  16. Mattiazzi A, Kranias EG (2010) CaMKII regulation of phospholamban and SR Ca2+ load. Heart Rhythm (doi: 10.1016/j.hrhtm.2010.11.035)

    Google Scholar 

  17. Wehrens XH, Lehnart SE, Reiken SR, Marks AR (2004) Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res 94(6):e61–70

    Article  PubMed  CAS  Google Scholar 

  18. Marx SO, Reiken S, Hisamatsu Y et al (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101(4):365–376

    Article  PubMed  CAS  Google Scholar 

  19. Schlotthauer K, Schattmann J, Bers DM et al (1998) Frequency-dependent changes in contribution of SR Ca2+ to Ca2+ transients in failing human myocardium assessed with ryanodine. J Mol Cell Cardiol 30(7):1285–1294

    Article  PubMed  CAS  Google Scholar 

  20. Pieske B, Sutterlin M, Schmidt-Schweda S et al (1996) Diminished post-rest potentiation of contractile force in human dilated cardiomyopathy. Functional evidence for alterations in intracellular Ca2+ handling. J Clin Invest 98(3):764–776

    Article  PubMed  CAS  Google Scholar 

  21. Harding SE, Jones SM, O’Gara P et al (1992) Isolated ventricular myocytes from failing and non-failing human heart; the relation of age and clinical status of patients to isoproterenol response. J Mol Cell Cardiol 24(5):549–564

    Article  PubMed  CAS  Google Scholar 

  22. Lehnart SE, Mongillo M, Bellinger A et al (2008) Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice. J Clin Invest 118(6):2230–2245

    PubMed  CAS  Google Scholar 

  23. Hasenfuss G (1998) Alterations of calcium-regulatory proteins in heart failure. Cardiovasc Res 37(2):279–289

    Article  PubMed  CAS  Google Scholar 

  24. Valdivia CR, Chu WW, Pu J et al (2005) Increased late sodium current in myocytes from a canine heart failure model and from failing human heart. J Mol Cell Cardiol 38(3):475–483

    Article  PubMed  CAS  Google Scholar 

  25. Kadambi VJ, Ponniah S, Harrer JM et al (1996) Cardiac-specific overexpression of phospholamban alters calcium kinetics and resultant cardiomyocyte mechanics in transgenic mice. J Clin Invest 97(2):533–539

    Article  PubMed  CAS  Google Scholar 

  26. Pieske B, Maier LS, Bers DM, Hasenfuss G (1999) Ca2+ handling and sarcoplasmic reticulum Ca2+ content in isolated failing and nonfailing human myocardium. Circ Res 85(1):38–46

    PubMed  CAS  Google Scholar 

  27. Reiken S, Gaburjakova M, Guatimosim S et al (2003) Protein kinase A phosphorylation of the cardiac calcium release channel (ryanodine receptor) in normal and failing hearts. Role of phosphatases and response to isoproterenol. J Biol Chem 278(1):444–453

    Article  PubMed  CAS  Google Scholar 

  28. Lehnart SE, Wehrens XH, Reiken S et al (2005) Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 123(1):25–35

    Article  PubMed  CAS  Google Scholar 

  29. Wehrens XH, Lehnart SE, Reiken S et al (2006) Ryanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression. Proc Natl Acad Sci U S A 103(3):511–518

    Article  PubMed  CAS  Google Scholar 

  30. Guo T, Cornea RL, Huke S et al (2010) Kinetics of FKBP12.6 binding to ryanodine receptors in permeabilized cardiac myocytes and effects on Ca sparks. Circ Res 106(11):1743–1752

    Article  PubMed  CAS  Google Scholar 

  31. Seidler T, Teucher N, Hellenkamp K et al (2011) Limitations of FKBP12.6-directed treatment strategies for maladaptive cardiac remodeling and heart failure. J Mol Cell Cardiol 50(1):33–42

    Article  PubMed  CAS  Google Scholar 

  32. Sossalla S, Fluschnik N, Schotola H et al (2010) Inhibition of elevated Ca2+/calmodulin-dependent protein kinase II improves contractility in human failing myocardium. Circ Res 107(9):1150–1161

    Article  PubMed  CAS  Google Scholar 

  33. De Koninck P, Schulman H (1998) Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279(5348):227–230

    Article  Google Scholar 

  34. Maier LS, Bers DM (2007) Role of Ca2+/calmodulin-dependent protein kinase (CaMK) in excitation-contraction coupling in the heart. Cardiovasc Res 73(4):631–640

    Article  PubMed  CAS  Google Scholar 

  35. Kohlhaas M, Zhang T, Seidler T et al (2006) Increased sarcoplasmic reticulum calcium leak but unaltered contractility by acute CaMKII overexpression in isolated rabbit cardiac myocytes. Circ Res 98(2):235–244

    Article  PubMed  CAS  Google Scholar 

  36. Hasenfuss G, Reinecke H, Studer R et al (1994) Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circ Res 75(3):434–442

    PubMed  CAS  Google Scholar 

  37. Schwinger RH, Brixius K, Bavendiek U et al (1997) Effect of cyclopiazonic acid on the force-frequency relationship in human nonfailing myocardium. J Pharmacol Exp Ther 283(1):286–292

    PubMed  CAS  Google Scholar 

  38. Neumann J, Eschenhagen T, Jones LR et al (1997) Increased expression of cardiac phosphatases in patients with end-stage heart failure. J Mol Cell Cardiol 29(1):265–272

    Article  PubMed  CAS  Google Scholar 

  39. Most P, Pleger ST, Volkers M et al (2004) Cardiac adenoviral S100A1 gene delivery rescues failing myocardium. J Clin Invest 114(11):1550–1563

    PubMed  CAS  Google Scholar 

  40. Pleger ST, Most P, Boucher M et al (2007) Stable myocardial-specific AAV6-S100A1 gene therapy results in chronic functional heart failure rescue. Circulation 115(19):2506–2515

    Article  PubMed  CAS  Google Scholar 

  41. Loukianov E, Ji Y, Grupp IL et al (1998) Enhanced myocardial contractility and increased Ca2+ transport function in transgenic hearts expressing the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+-ATPase. Circ Res 83(9):889–897

    PubMed  CAS  Google Scholar 

  42. Gwathmey JK, Yerevanian AI, Hajjar RJ (2010) Cardiac gene therapy with SERCA2a: from bench to bedside. J Mol Cell Cardiol (doi: 10.1016/j.yjmcc.2010.11.011)

    Google Scholar 

  43. Kawase Y, Ly HQ, Prunier F et al (2008) Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J Am Coll Cardiol 51(11):1112–1119

    Article  PubMed  CAS  Google Scholar 

  44. Hajjar RJ, Zsebo K, Deckelbaum L et al (2008) Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure. J Card Fail 14(5):355–367

    Article  PubMed  CAS  Google Scholar 

  45. Sossalla S, Hasenfuss G, Maier LS (2008) Inhibition des späten Natriumeinstroms (INa,late) als neuartige kardioprotektive Therapieoption. Kardiologe (2):142–148

  46. Sossalla S, Wagner S, Rasenack EC et al (2008) Ranolazine improves diastolic dysfunction in isolated myocardium from failing human hearts – role of late sodium current and intracellular ion accumulation. J Mol Cell Cardiol 45(1):32–43

    Article  PubMed  CAS  Google Scholar 

  47. Undrovinas AI, Belardinelli L, Undrovinas NA, Sabbah HN (2006) Ranolazine improves abnormal repolarization and contraction in left ventricular myocytes of dogs with heart failure by inhibiting late sodium current. J Cardiovasc Electrophysiol 17(Suppl 1):S169–S177

    Article  PubMed  Google Scholar 

  48. Chaitman BR, Skettino SL, Parker JO et al (2004) Anti-ischemic effects and long-term survival during ranolazine monotherapy in patients with chronic severe angina. J Am Coll Cardiol 43(8):1375–1382

    Article  PubMed  CAS  Google Scholar 

  49. Chaitman BR, Pepine CJ, Parker JO et al (2004) Effects of ranolazine with atenolol, amlodipine, or diltiazem on exercise tolerance and angina frequency in patients with severe chronic angina: a randomized controlled trial. JAMA 291(3):309–316

    Article  PubMed  CAS  Google Scholar 

  50. Morrow DA, Scirica BM, Karwatowska-Prokopczuk E et al (2007) Effects of ranolazine on recurrent cardiovascular events in patients with non-ST-elevation acute coronary syndromes: the MERLIN-TIMI 36 randomized trial. JAMA 297(16):1775–1783

    Article  PubMed  CAS  Google Scholar 

  51. Scirica BM, Morrow DA, Hod H et al (2007) Effect of ranolazine, an antianginal agent with novel electrophysiological properties, on the incidence of arrhythmias in patients with non ST-segment elevation acute coronary syndrome: results from the Metabolic Efficiency With Ranolazine for Less Ischemia in Non ST-Elevation Acute Coronary Syndrome Thrombolysis in Myocardial Infarction 36 (MERLIN-TIMI 36) randomized controlled trial. Circulation 116(15):1647–1652

    Article  PubMed  CAS  Google Scholar 

  52. Sossalla S, Kallmeyer B, Wagner S et al (2010) Altered Na(+) currents in atrial fibrillation effects of ranolazine on arrhythmias and contractility in human atrial myocardium. J Am Coll Cardiol 55(21):2330–2342

    Article  PubMed  CAS  Google Scholar 

  53. Wagner S, Dybkova N, Rasenack EC et al (2006) Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest 116(12):3127–3138

    Article  PubMed  CAS  Google Scholar 

  54. Neef S, Dybkova N, Sossalla S et al (2010) CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ Res 106(6):1134–1144

    Article  PubMed  CAS  Google Scholar 

Download references

Danksagung

Prof. Maier wird seit Jahren durch die DFG unterstützt (Ma 1982/2-2, Ma 1982/4-1) sowie durch Fondation Leducq.

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehungen hin: Prof. Maier steht im Rahmen seiner Forschung in Beziehung mit GILEAD, weiter bestehen Beziehungen mit Berlin-Chemie, Menarini und Servier.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.S. Maier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, T., Rokita, A. & Maier, L. Schlüsselrolle des Ca2+ in der Herzinsuffizienz und mögliche neue therapeutische Ansatzpunkte. Kardiologe 5, 80–90 (2011). https://doi.org/10.1007/s12181-011-0325-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12181-011-0325-3

Schlüsselwörter

Keywords

Navigation