Skip to main content

Advertisement

Log in

Future Directions in Patellofemoral Imaging and 3D Modeling

  • Advances in Patellofemoral Surgery (S Sherman, Section Editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

Patellofemoral instability involves complex, three-dimensional pathological anatomy. However, current clinical evaluation and diagnosis relies on attempting to capture the pathology through numerous two-dimensional measurements. This current review focuses on recent advancements in patellofemoral imaging and three-dimensional modeling.

Recent Findings

Several studies have demonstrated the utility of dynamic imaging modalities. Specifically, radiographic patellar tracking correlates with symptomatic instability, and quadriceps activation and weightbearing alter patellar kinematics. Further advancements include the study of three-dimensional models. Automation of commonly utilized measurements such as tibial tubercle–trochlear groove (TT-TG) distance has the potential to resolve issues with inter-rater reliability and fluctuation with knee flexion or tibial rotation. Future directions include development of robust computational models (e.g., finite element analysis) capable of incorporating patient-specific data for surgical planning purposes.

Summary

While several studies have utilized novel dynamic imaging and modeling techniques to enhance our understanding of patellofemoral joint mechanics, these methods have yet to find a definitive clinical utility. Further investigation is required to develop practical implementation into clinical workflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mason JJ, Leszko F, Johnson T, Komistek RD. Patellofemoral joint forces. J Biomech. 2008;41(11):2337–48. https://doi.org/10.1016/j.jbiomech.2008.04.039.

    Article  CAS  PubMed  Google Scholar 

  2. Amis AA. Current concepts on anatomy and biomechanics of patellar stability. Sports Med Arthroscopy Rev. 2007;15(2).

  3. Dietrich TJ, Fucentese SF, Pfirrmann CW. Imaging of individual anatomical risk factors for patellar instability. Seminars in musculoskeletal radiology: Thieme Medical Publishers; 2016. p. 065-73.

  4. van Huyssteen AL, Hendrix MR, Barnett AJ, Wakeley CJ, Eldridge JD. Cartilage-bone mismatch in the dysplastic trochlea. An MRI study. J Bone Joint Surg Br. 2006;88(5):688–91. https://doi.org/10.1302/0301-620x.88b5.16866.

    Article  PubMed  Google Scholar 

  5. Huddleston HP, Redondo ML, Cregar WM, Christian DR, Hannon CP, Yanke AB. The effect of aberrant rotation on radiographic patellar height measurement using Canton-Deschamps Index: a cadaveric analysis. J Knee Surg. 2021. https://doi.org/10.1055/s-0041-1731720.

  6. Aarvold A, Pope A, Sakthivel VK, Ayer RV. MRI performed on dedicated knee coils is inaccurate for the measurement of tibial tubercle trochlear groove distance. Skeletal Radiol. 2014;43(3):345–9. https://doi.org/10.1007/s00256-013-1790-5.

    Article  CAS  PubMed  Google Scholar 

  7. Ye Q, Yu T, Wu Y, Ding X, Gong X. Patellar instability: the reliability of magnetic resonance imaging measurement parameters. BMC Musculoskelet Disord. 2019;20(1):317. https://doi.org/10.1186/s12891-019-2697-7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kazley JM, Banerjee S. Classifications in brief: the Dejour classification of trochlear dysplasia. Clin Orthop Relat Res. 2019;477(10):2380–6. https://doi.org/10.1097/CORR.0000000000000886.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lippacher S, Dejour D, Elsharkawi M, Dornacher D, Ring C, Dreyhaupt J, Reichel H, Nelitz M. Observer agreement on the Dejour trochlear dysplasia classification: a comparison of true lateral radiographs and axial magnetic resonance images. Am J Sports Med. 2012;40(4):837–43. https://doi.org/10.1177/0363546511433028.

    Article  PubMed  Google Scholar 

  10. • Pennock AT, Chang A, Doan J, Bomar JD, Edmonds EW. 3D knee trochlear morphology assessment by magnetic resonance imaging in patients with normal and dysplastic trochleae. Journal of Pediatric Orthopaedics. 2020;40(3):114–9 Sucessfully generated and measured three-dimensional parameters of trochlear models, finding significant differences from healthy controls particularly in the proximal trochlea.

    Article  Google Scholar 

  11. Grimm NL, Levy BJ, Jimenez AE, Crepeau AE, Pace JL. Traumatic patellar dislocations in childhood and adolescents. Orthopedic Clinics. 2020;51(4):481–91.

    PubMed  Google Scholar 

  12. Yu Z, Yao J, Wang X, Xin X, Zhang K, Cai H, Fan Y, Yang B. Research methods and progress of patellofemoral joint kinematics: a review. J Healthcare Eng. 2019;2019:9159267. https://doi.org/10.1155/2019/9159267.

    Article  Google Scholar 

  13. Hirschmann A, Buck FM, Fucentese SF, Pfirrmann CWA. Upright CT of the knee: the effect of weight-bearing on joint alignment. Eur Radiol. 2015;25(11):3398–404. https://doi.org/10.1007/s00330-015-3756-6.

    Article  PubMed  Google Scholar 

  14. •• Becher C, Fleischer B, Rase M, Schumacher T, Ettinger M, Ostermeier S, et al. Effects of upright weight bearing and the knee flexion angle on patellofemoral indices using magnetic resonance imaging in patients with patellofemoral instability. Knee Surg Sports Traumatol Arthrosc. 2017;25(8):2405–13. https://doi.org/10.1007/s00167-015-3829-8Upright weightbearing significantly increased patellar tilt, height, and bisect offset in full extension.

    Article  PubMed  Google Scholar 

  15. Marzo J, Kluczynski M, Notino A, Bisson L. Comparison of a novel weightbearing cone beam computed tomography scanner versus a conventional computed tomography scanner for measuring patellar instability. Orthop J Sports Med. 2016;4(12):2325967116673560. https://doi.org/10.1177/2325967116673560.

    Article  PubMed  PubMed Central  Google Scholar 

  16. •• Frings J, Dust T, Krause M, Ohlmeier M, Frosch K-H, Adam G, et al. Objective assessment of patellar maltracking with 3 T dynamic magnetic resonance imaging: feasibility of a robust and reliable measuring technique. Sci Rep. 2020;10(1):16770. https://doi.org/10.1038/s41598-020-72332-9Demonstrated reliability of dynamic MRI technique for evaluation of patellar maltracking and correlation with traditional anatomic factors (e.g. tibial tubercle-trochlear groove (TT-TG) distance, patellar height).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. •• Tanaka MJ, Elias JJ, Williams AA, Demehri S, Cosgarea AJ. Characterization of patellar maltracking using dynamic kinematic CT imaging in patients with patellar instability. Knee Surg, Sports Traumatol, Arthrosc. 2016;24(11):3634–41. https://doi.org/10.1007/s00167-016-4216-9Identified an objective measurement of patellar maltracking. Radiographic J-sign of 2 quadrants correlated reliably with patellar instability symptoms.

    Article  Google Scholar 

  18. Burke CJ, Kaplan D, Block T, Chang G, Jazrawi L, Campbell K, Alaia M. Clinical utility of continuous radial magnetic resonance imaging acquisition at 3 T in real-time patellofemoral kinematic assessment: a feasibility study. Arthrosc J Arthrosc Relat Surg. 2018;34(3):726–33. https://doi.org/10.1016/j.arthro.2017.09.020.

    Article  Google Scholar 

  19. Carlson VR, Sheehan FT, Shen A, Yao L, Jackson JN, Boden BP. The relationship of static tibial tubercle–trochlear groove measurement and dynamic patellar tracking. Am J Sports Med. 2017;45(8):1856–63. https://doi.org/10.1177/0363546517700119.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tanaka MJ, Elias JJ, Williams AA, Carrino JA, Cosgarea AJ. Correlation between changes in tibial tuberosity–trochlear groove distance and patellar position during active knee extension on dynamic kinematic computed tomographic imaging. Arthrosc J Arthrosc Relat Surg. 2015;31(9):1748–55. https://doi.org/10.1016/j.arthro.2015.03.015.

    Article  Google Scholar 

  21. Williams AA, Elias JJ, Tanaka MJ, Thawait GK, Demehri S, Carrino JA, Cosgarea AJ. The relationship between tibial tuberosity–trochlear groove distance and abnormal patellar tracking in patients with unilateral patellar instability. Arthrosc J Arthrosc Relat Surg. 2016;32(1):55–61. https://doi.org/10.1016/j.arthro.2015.06.037.

    Article  Google Scholar 

  22. Gobbi RG, Demange MK, de Ávila LFR, Araújo Filho JDAB, Moreno RA, Gutierrez MA, et al. Patellar tracking after isolated medial patellofemoral ligament reconstruction: dynamic evaluation using computed tomography. Knee Surg, Sports Traumatol, Arthrosc. 2017;25(10):3197–205. https://doi.org/10.1007/s00167-016-4284-x.

    Article  Google Scholar 

  23. Haj-Mirzaian A, Thawait GK, Tanaka MJ, Demehri S. Diagnosis and characterization of patellofemoral instability: review of available imaging modalities. Sports Med Arthrosc Rev. 2017;25(2):64–71.

    Article  Google Scholar 

  24. Demehri S, Thawait GK, Williams AA, Kompel A, Elias JJ, Carrino JA, Cosgarea AJ. Imaging characteristics of contralateral asymptomatic patellofemoral joints in patients with unilateral instability. Radiology. 2014;273(3):821–30. https://doi.org/10.1148/radiol.14140295.

    Article  PubMed  Google Scholar 

  25. Lansdown DA, Ma CB. Clinical utility of advanced imaging of the knee. J Orthop Res. 2020;38(3):473–82. https://doi.org/10.1002/jor.24462.

    Article  PubMed  Google Scholar 

  26. • Esfandiarpour F, Lebrun CM, Dhillon S, Boulanger P. In-vivo patellar tracking in individuals with patellofemoral pain and healthy individuals. J Orthop Res. 2018;36(8):2193–201. https://doi.org/10.1002/jor.23887Demonstrated via biplanar fluoroscopy that patients with patellofemoral pain had increased patellar tilt and range in weightbearing extension and deep lunge tasks compared to normal controls with minimal change.

    Article  Google Scholar 

  27. Gustafson JA, Elias JJ, Fitzgerald GK, Tashman S, Debski RE, Farrokhi S. Combining advanced computational and imaging techniques as a quantitative tool to estimate patellofemoral joint stress during downhill gait: a feasibility study. Gait Posture. 2021;84:31–7. https://doi.org/10.1016/j.gaitpost.2020.11.016.

    Article  PubMed  Google Scholar 

  28. Weber AE, Nathani A, Dines JS, Allen AA, Shubin-Stein BE, Arendt EA, Bedi A. An algorithmic approach to the management of recurrent lateral patellar dislocation. J Bone Joint Surg Am. 2016;98(5):417–27. https://doi.org/10.2106/jbjs.O.00354.

    Article  PubMed  Google Scholar 

  29. Dai Z-Z, Sha L, Zhang Z-M, Liang Z-P, Li H, Li H. Comparing the tibial tuberosity–trochlear groove distance between CT and MRI in skeletally immature patients with and without patellar instability. Orthop J Sports Med. 2021;9(1):232596712097366. https://doi.org/10.1177/2325967120973665.

    Article  Google Scholar 

  30. Camp CL, Heidenreich MJ, Dahm DL, Bond JR, Collins MS, Krych AJ. A simple method of measuring tibial tubercle to trochlear groove distance on MRI: description of a novel and reliable technique. Knee Surg Sports Traumatol Arthrosc. 2016;24(3):879–84. https://doi.org/10.1007/s00167-014-3405-7.

    Article  PubMed  Google Scholar 

  31. Suomalainen J-S, Regalado G, Joukainen A, Kääriäinen T, Könönen M, Manninen H, et al. Effects of knee flexion and extension on the tibial tuberosity–trochlear groove (TT–TG) distance in adolescents. J Exp Orthop. 2018;5(1). https://doi.org/10.1186/s40634-018-0149-1.

  32. Marquez-Lara A, Andersen J, Lenchik L, Ferguson CM, Gupta P. Variability in patellofemoral alignment measurements on MRI: influence of knee position. Am J Roentgenol. 2017;208(5):1097–102. https://doi.org/10.2214/ajr.16.17007.

    Article  Google Scholar 

  33. Worden A, Kaar S, Owen J, Cutuk A. Radiographic and anatomic evaluation of tibial tubercle to trochlear groove distance. J Knee Surg. 2016;29(7):589–93. https://doi.org/10.1055/s-0035-1569478.

    Article  PubMed  Google Scholar 

  34. • Chen H, Kluijtmans L, Bakker M, Dunning H, Kang Y, van de Groes S, et al. A robust and semi-automatic quantitative measurement of patellofemoral instability based on four dimensional computed tomography. Med Eng Phys. 2020;78:29–38. https://doi.org/10.1016/j.medengphy.2020.01.012Developed an automated method for calculation of TT-TG and patella center-trochlear groove (PC-TG) in a dynamic knee model. This required a manual segmentation step.

    Article  PubMed  Google Scholar 

  35. Lenchik L, Heacock L, Weaver AA, Boutin RD, Cook TS, Itri J, Filippi CG, Gullapalli RP, Lee J, Zagurovskaya M, Retson T, Godwin K, Nicholson J, Narayana PA. Automated segmentation of tissues using CT and MRI: a systematic review. Acad Radiol. 2019;26(12):1695–706. https://doi.org/10.1016/j.acra.2019.07.006.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cheng R, Alexandridi NA, Smith RM, Shen A, Gandler W, McCreedy E, McAuliffe MJ, Sheehan FT. Fully automated patellofemoral MRI segmentation using holistically nested networks: implications for evaluating patellofemoral osteoarthritis, pain, injury, pathology, and adolescent development. Magn Reson Med. 2020;83(1):139–53. https://doi.org/10.1002/mrm.27920.

    Article  PubMed  Google Scholar 

  37. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44. https://doi.org/10.1038/nature14539.

    Article  CAS  PubMed  Google Scholar 

  38. Lundervold AS, Lundervold A. An overview of deep learning in medical imaging focusing on MRI. Zeitschrift für Medizinische Physik. 2019;29(2):102–27. https://doi.org/10.1016/j.zemedi.2018.11.002.

    Article  PubMed  Google Scholar 

  39. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88. https://doi.org/10.1016/j.media.2017.07.005.

    Article  PubMed  Google Scholar 

  40. Ali AA, Shalhoub SS, Cyr AJ, Fitzpatrick CK, Maletsky LP, Rullkoetter PJ, Shelburne KB. Validation of predicted patellofemoral mechanics in a finite element model of the healthy and cruciate-deficient knee. J Biomech. 2016;49(2):302–9. https://doi.org/10.1016/j.jbiomech.2015.12.020.

    Article  PubMed  Google Scholar 

  41. Guan W, Sun Y, Qi X, Hu Y, Duan C, Tao H, et al. Spinal biomechanics modeling and finite element analysis of surgical instrument interaction. Comput Assist Surg (Abingdon). 2019;24(supp1):151–9. https://doi.org/10.1080/24699322.2018.1560086.

    Article  Google Scholar 

  42. Zheng M, Zou Z, Bartolo PJ, Peach C, Ren L. Finite element models of the human shoulder complex: a review of their clinical implications and modelling techniques. Int J Numer Method Biomed Eng. 2017;33(2). https://doi.org/10.1002/cnm.2777.

  43. Shu L, Sato T, Hua X, Sugita N. Comparison of kinematics and contact mechanics in normal knee and total knee replacements: a computational investigation. Ann Biomed Eng. 2021;49:2491–502. https://doi.org/10.1007/s10439-021-02812-0.

    Article  PubMed  Google Scholar 

  44. Loi I, Stanev D, Moustakas K. Total knee replacement: subject-specific modeling, finite element analysis, and evaluation of dynamic activities. Front Bioeng Biotechnol. 2021;9:648356. https://doi.org/10.3389/fbioe.2021.648356.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ding K, Yang W, Wang H, Zhan S, Hu P, Bai J, Ren C, Zhang Q, Zhu Y, Chen W. Finite element analysis of biomechanical effects of residual varus/valgus malunion after femoral fracture on knee joint. Int Orthop. 2021;45(7):1827–35. https://doi.org/10.1007/s00264-021-05039-9.

    Article  PubMed  Google Scholar 

  46. Peng Y, Zhang G, Zhang S, Ji X, Li J, Du C, et al. Biomechanical study of transsacral-transiliac screw fixation versus lumbopelvic fixation and bilateral triangular fixation for “H”- and “U”-type sacrum fractures with traumatic spondylopelvic dissociation: a finite element analysis study. J Orthop Surg Res. 2021;16(1):428. https://doi.org/10.1186/s13018-021-02581-5.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kwak DK, Bang SH, Kim WH, Lee SJ, Lee S, Yoo JH. Biomechanics of subtrochanteric fracture fixation using short cephalomedullary nails: a finite element analysis. PLoS One. 2021;16(7):e0253862. https://doi.org/10.1371/journal.pone.0253862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lewis GS, Mischler D, Wee H, Reid JS, Varga P. Finite element analysis of fracture fixation. Curr Osteoporos Rep. 2021;19:403–16. https://doi.org/10.1007/s11914-021-00690-y.

    Article  PubMed  Google Scholar 

  49. Minns RJ, Steven FS. The collagen fibril organization in human articular cartilage. J Anat. 1977;123(Pt 2):437–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Fernandez JW, Hunter PJ. An anatomically based patient-specific finite element model of patella articulation: towards a diagnostic tool. Biomech Model Mechanobiol. 2005;4(1):20–38. https://doi.org/10.1007/s10237-005-0072-0.

    Article  CAS  PubMed  Google Scholar 

  51. Guess TM, Thiagarajan G, Kia M, Mishra M. A subject specific multibody model of the knee with menisci. Med Eng Phys. 2010;32(5):505–15. https://doi.org/10.1016/j.medengphy.2010.02.020.

    Article  PubMed  Google Scholar 

  52. Baldwin MA, Clary C, Maletsky LP, Rullkoetter PJ. Verification of predicted specimen-specific natural and implanted patellofemoral kinematics during simulated deep knee bend. J Biomech. 2009;42(14):2341–8. https://doi.org/10.1016/j.jbiomech.2009.06.028.

    Article  PubMed  Google Scholar 

  53. Pal S, Besier TF, Gold GE, Fredericson M, Delp SL, Beaupre GS. Patellofemoral cartilage stresses are most sensitive to variations in vastus medialis muscle forces. Comput Methods Biomech Biomed Eng. 2019;22(2):206–16. https://doi.org/10.1080/10255842.2018.1544629.

    Article  Google Scholar 

  54. •• Kaiser D, Trummler L, Götschi T, Waibel FWA, Snedeker JG, Fucentese SF. Patellofemoral instability in trochleodysplastic knee joints and the quantitative influence of simulated trochleoplasty – a finite element simulation. Clin Biomech (Bristol). 2021;81:105216. https://doi.org/10.1016/j.clinbiomech.2020.105216Demonstrated feasibility of surgical simulation (trochleoplasty) for a patellofemoral finite element analysis model.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam B. Yanke.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Advances in Patellofemoral Surgery

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dandu, N., Knapik, D.M., Trasolini, N.A. et al. Future Directions in Patellofemoral Imaging and 3D Modeling. Curr Rev Musculoskelet Med 15, 82–89 (2022). https://doi.org/10.1007/s12178-022-09746-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-022-09746-7

Keywords

Navigation