Skip to main content

Advertisement

Log in

Treatment Options for Patellofemoral Arthritis

  • Non-Operative Management of Anterior Knee Pain (M Fredericson and T Besier, Section Editors)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

To present a synthesis of recent literature regarding the treatment of patellofemoral arthritis

Recent Findings

Risk factors of PFJ OA include patella malalignment or maltracking, injury to supportive structures including the MPFL, dysfunction of hamstring and quadriceps coordination, lower limb alignment, trochlear dysplasia, patellar trauma, or ACL surgery. Special physical exam maneuvers include patellar grind test, apprehension test, and lateral patellar tilt angle. Radiographs that should be obtained first-line include weight bearing bilateral AP, lateral, and Merchant views. CT and MRI are used to assess trochlear dysplasia, excessive patellar height, and TT-TG distance. Non-operative management options discussed include non-pharmacologic treatment (patient education, self-management, physical therapy, weight loss), ESWT, cold therapy, taping, bracing, and orthotics. Pharmacologic management options discussed include NSAIDs, acetaminophen, oral narcotics, and duloxetine. Injection therapies include glucocorticoids, hyaluronic acid, PRP, and other regenerative therapies (BMAC, adipose, or mesenchymal stem cells). Other treatment options include radiofrequency ablation and botulinum toxin. The algorithm for the surgical treatment of PFJ OA can begin with arthroscopic assessment of the PF articular cartilage to address mechanical symptoms and to evaluate/treat lateral soft tissue with or without overhanging lateral osteophytes. If patients fail to have symptomatic improvement, a TTO can be considered in those patients less than 50 years of age or active patients >50 years old. In patients with severe PFJ OA, refractory to the above treatments, PFA should be considered. While early PFA design and technique were less than encouraging, more recent implant design and surgical technique have demonstrated robust results in the literature.

Summary

Patellofemoral osteoarthritis is a challenging orthopedic problem to treat, in that it can often affect younger patients, with otherwise well-functioning knees. It is a unique entity compared to TF OA with distinct epidemiology, biomechanics and risk factors and treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Duncan R, Hay E, Saklatvala J, Croft P. Prevalence of radiographic osteoarthritis: it all depends on your point of view. Rheumatology. 2006;45:757–60.

    Article  CAS  PubMed  Google Scholar 

  2. Davies AP, Vince AS, Shepstone L, Donell ST, Glasgow MM. The radiologic prevalence of patellofemoral osteoarthritis. Clin Orthop Relat Res. 2002;402:206–12.

    Article  Google Scholar 

  3. McAlindon TE, Snow S, Cooper C, Dieppe PA. Radiographic patterns of osteoarthritis of the knee joint in the community: the importance of the patellofemoral joint. Ann Rheum Dis. 1992;51:844–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Szebenyi B, Hollander A, Dieppe P, et al. Associations between pain, function, and radiographic features in osteoarthritis of the knee. Arthritis Rheum. 2006;54:230–5.

    Article  PubMed  Google Scholar 

  5. Kornaat P, Bloem J, Ceulemans R, et al. Osteoarthritis of the knee: association between clinical features and MR imaging findings. Radiology. 2006;239:811–7.

    Article  PubMed  Google Scholar 

  6. Englund M, Lohmander L. Patellofemoral osteoarthritis coexistant with tibiofemoral osteoarthritis in a meniscectomy population. Ann Rheum Dis. 2005;64:1721–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Boegard T, Rudling O, Petersson IF, Jonsson K. Correlation between radiographically diagnosed osteophytes and magnetic resonance detected cartilage defects in the patellofemoral joint. Ann Rheum Dis. 1998;57:395–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cicuttini FM, Baker J, Hart DJ, Spector TD. Association of pain with radiological changes in different compartments and views of the knee joint. Osteoarthr Cartil. 1996;4:143–7.

    Article  CAS  Google Scholar 

  9. Lanyon P, O’Reilly S, Jones A, Doherty M. Radiographic assessment of symptomatic knee osteoarthritis in the community: definitions and normal joint space. Ann Rheum Dis. 1998;57:595–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Grelsamer RP, Weinstein CH. Applied biomechanics of the patella. Clin Orthop Relat Res. 2001;389:9–14.

    Article  Google Scholar 

  11. Loudon JK. Biomechanics and Pathomechanics of the patellofemoral joint. Int J Sports Phys Ther 2016;11(6):820-830. Accessed June 27, 2021. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5095937/

  12. Hinman RS, Crossley KM. Patellofemoral joint osteoarthritis: an important subgroup of knee osteoarthritis. Rheumatology (Oxford). 2007;46(7):1057–62. https://doi.org/10.1093/rheumatology/kem114.

    Article  CAS  Google Scholar 

  13. Niu J, Zhang Y, Nevitt M, et al. Patella malalignment is associated with prevalent patellofemoral osteoarthritis: the Beijing osteoarthritis study, Arthritis Rheum, 2005, vol. 52 (pg. S456-S457)

  14. Hunter D, Zhang Y, Niu J, et al. Patella malalignment and its consequences: the health ABC study, Arthritis Rheum, 2005, vol. 52 pg. S686

  15. Iwano T, Kurosawa H, Tokuyama H, Hoshikawa Y. Roentographic and clinical findings of patellofemoral arthritis, Clin Orthop, 1990, vol. 252 (pg. 190-197)

  16. Jungmann PM, Tham S-C, Liebl H, et al. Association of trochlear dysplasia with degenerative abnormalities in the knee: data from the osteoarthritis initiative. Skelet Radiol. 2013;42(10):1383–92. https://doi.org/10.1007/s00256-013-1664-x.

    Article  Google Scholar 

  17. Ward SR, Terk MR, Powers CM. Patella Alta: association with patellofemoral alignment and changes in contact area during weight-bearing. J Bone Joint Surg - Am. 2007;89(8):1749–55.

    PubMed  Google Scholar 

  18. Insall J, Goldberg V, Salvati E. Recurrent dislocation and the high-riding patella. Clin Orthopaedics Related Res. 1972;88:67–9.

    Article  CAS  Google Scholar 

  19. Stefanik JJ, Zhu Y, Zumwalt AC, et al. Association between patella Alta and the prevalence and worsening of structural features of patellofemoral joint osteoarthritis: the multicenter osteoarthritis study. Arthritis Care Res (Hoboken). 2010;62(9):1258–65. https://doi.org/10.1002/acr.20214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kiel J, Kaiser K. Patellofemoral arthritis. In: StatPearls. StatPearls Publishing; 2021. Accessed June 11, 2021. http://www.ncbi.nlm.nih.gov/books/NBK513242/

  21. Neptune RR, Wright IC, Van den Bogert AJ. The influence of orthotic devices and vastus medialis strength and timing on patellofemoral loads during running. Clin Biomech. 2000;15 (pg:611–8.

    Article  Google Scholar 

  22. Sakai N, Luo Z-P, Rand JA, An KN. The influence of weakness in the vastus medialis oblique muscle on the patellofemoral joint: an in vitro biomechanical study. Clin Biomech. 2000;15 (pg:335–9.

    Article  Google Scholar 

  23. Voight M, Weider D. Comparative reflex response times of the vastus medialis and the vastus lateralis in normal subjects with extensor mechanism dysfunction. Am J Sports Med. 1991;19 (pg:131–137.

  24. Cesarelli M, Bifulco P, Bracale M. Quadriceps muscle activation in anterior knee pain during isokinetic exercise, med Eng. Physics. 1999;21 (pg:469–478.

  25. Cesarelli M, Bifulco P, Bracale M. Study of the control strategy of the quadriceps muscles in anterior knee pain. IEEE Trans Rehabil Eng. 2000;8 (pg:330–341.

  26. Cowan SM, Hodges PW, Bennell KL, Crossley KM. Altered vasti recruitment when people with patellofemoral pain syndrome complete a postural task. Arch Phys Med Rehabil. 2002;83 (pg:989–995.

  27. Cowan SM, Bennell KL, Hodges PW, Crossley KM, McConnell J. Delayed onset of electromyographic activity of vastus medialis obliquus relative to vastus lateralis in subjects with patellofemoral pain syndrome. Arch Phys Med Rehabil. 2001;82 (pg:183–189.

  28. Willson JD, Dougherty CP, Ireland ML, Davis IM. Core stability and its relationship to lower extremity function and injury. J Am Acad Orthop Surg. 2005;13(5):316–25.

    Article  PubMed  Google Scholar 

  29. • Powers CM, Witvrouw E, Davis IS, Crossley KM. Evidence-based framework for a pathomechanical model of patellofemoral pain: 2017 patellofemoral pain consensus statement from the 4th international patellofemoral pain research retreat, Manchester, UK: part 3. Br J Sports Med. 2017;51(24):1713–23. Recent consensus statement at the 4th International Patellofemora Pain Research Retreat.

  30. Farrokhi S, Piva SR, Gil AB, Oddis CV, Brooks MM, Fitzgerald GK. Association of severity of coexisting patellofemoral disease with increased impairments and functional limitations in patients with knee osteoarthritis. Arthritis Care Res (Hoboken). 2013;65(4):544–51.

    Article  Google Scholar 

  31. Hoglund LT, Pontiggia L, Kelly JD. A 6-week hip muscle strengthening and lumbopelvic-hip core stabilization program to improve pain, function, and quality of life in persons with patellofemoral osteoarthritis: a feasibility pilot study. Pilot Feasibility Stud. 2018;4(1):70. https://doi.org/10.1186/s40814-018-0262-z.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Crossley KM, Vicenzino B, Lentzos J, Schache AG, Pandy MG, Ozturk H, et al. Exercise, education, manual-therapy and taping compared to education for patellofemoral osteoarthritis: a blinded, randomised clinical trial. Osteoarthr Cartil. 2015;23(9):1457–64.

    Article  CAS  Google Scholar 

  33. Quilty B, Tucker M, Campbell R, Dieppe P. Physiotherapy, including quadriceps exercises and patellar taping, for knee osteoarthritis with predominant patello-femoral joint involvement: randomized controlled trial. J Rheumatol. 2003;30(6):1311–7.

    PubMed  Google Scholar 

  34. Alba-Martin P, Gallego-Izquierdo T, Plaza-Manzano G, Romero-Franco N, Nunez-Nagy S, Pecos-Martin D. Effectiveness of therapeutic physical exercise in the treatment of patellofemoral pain syndrome: a systematic review. J Phys Ther Sci. 2015;27(7):2387–90.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Thomson C, Krouwel O, Kuisma R, Hebron C. The outcome of hip exercise in patellofemoral pain: a systematic review. Man Ther. 2016;26:1–30.

    Article  PubMed  Google Scholar 

  36. Lack S, Barton C, Sohan O, Crossley K, Morrissey D. Proximal muscle rehabilitation is effective for patellofemoral pain: a systematic review with meta-analysis. Br J Sports Med. 2015;49(21):1365–76.

    Article  PubMed  Google Scholar 

  37. Yilmaz Yelvar GD, Baltaci G, Bayrakci Tunay V, Atay AO. The effect of postural stabilization exercises on pain and function in females with patellofemoral pain syndrome. Acta Orthop Traumatol Turc. 2015;49(2):166–74.

    PubMed  Google Scholar 

  38. Huberti H, Hayes W. Patellofemoral contact pressures: the influence of the Q-angle and tendofemoral contact. J Bone Joint Surg Am. 1984;66A:(pg. 715-24).

    Google Scholar 

  39. Mizuno Y, Kumagai M, Mattessich S, et al. Q-angle influences tibiofemoral and patellofemoral kinematics. J Orthop Res. 2001;19 (pg:834–40.

    Article  Google Scholar 

  40. Elahi S, Cahue S, Felson DT, Engelman L, Sharma L. The association between varus-valgus alignment and patellofemoral osteoarthritis. Arthritis Rheum. 2000;43 (pg:1874–80.

    Article  Google Scholar 

  41. Malone TR, Pfeifle AL. Chapter 69 - Patellofemoral disorders. In: Placzek JD, Boyce DA, eds. Orthopaedic physical therapy secrets (Third Edition). Elsevier; 2017:536-546. https://doi.org/10.1016/B978-0-323-28683-1.00069-2

  42. Hinterwimmer S, Gotthard M, von Eisenhart-Rothe R, et al. In vivo contact areas of the knee in patients with patellar subluxation. J Biomech. 2005;38 (pg:2095–2101.

  43. Cahue S, Dunlop D, Hayes K, Song J, Torres L, Sharma L. Varus-valgus alignment in the progression of patellofemoral osteoarthritis. Arthritis Rheum. 2004;50 (pg:2184–2190.

  44. Kim Y-M, Joo Y-B. Patellofemoral osteoarthritis. Knee Surg Relat Res. 2012;24(4):193–200. https://doi.org/10.5792/ksrr.2012.24.4.193.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Van Haver A, De Roo K, De Beule M, et al. The effect of trochlear dysplasia on patellofemoral biomechanics: a cadaveric study with simulated trochlear deformities. Am J Sports Med. 2015;43(6):1354–61. https://doi.org/10.1177/0363546515572143.

    Article  PubMed  Google Scholar 

  46. Mofidi A, Veravalli K, Jinnah RH, Poehling GG. Association and impact of patellofemoral dysplasia on patellofemoral arthropathy and arthroplasty. Knee. 2014;21(2):509–13. https://doi.org/10.1016/j.knee.2013.09.009.

    Article  PubMed  Google Scholar 

  47. Dejour D, Reynaud P, Lecoultre B. Pain and patellar instability classification. [in French]. Med Hyg. 1998;56:1466–71.

    Google Scholar 

  48. Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc.

  49. Dejour H, Walch G, Neyret P, Adeleine P. Dysplasia of the femoral trochlea. [in French]. Rev Chir Orthop Reparatrice Appar Mot. 1990;76:45–54.

    CAS  PubMed  Google Scholar 

  50. Snoeker B, Turkiewicz A, Magnusson K, et al. Risk of knee osteoarthritis after different types of knee injuries in young adults: a population-based cohort study. Br J Sports Med. 2020;54(12):725–30. https://doi.org/10.1136/bjsports-2019-100959.

    Article  PubMed  Google Scholar 

  51. Larsen P, Rathleff MS, Østgaard SE, Johansen MB, Elsøe R. Patellar fractures are associated with an increased risk of total knee arthroplasty: a matched cohort study of 6096 patellar fractures with a mean follow-up of 14.3 years. Bone Joint J. 2018;100-B(11):1477–81. https://doi.org/10.1302/0301-620X.100B11.BJJ-2018-0312.R2.

    Article  CAS  PubMed  Google Scholar 

  52. Sanders TL, Pareek A, Johnson NR, Stuart MJ, Dahm DL, Krych AJ. Patellofemoral arthritis after lateral patellar dislocation: a matched population-based analysis. Am J Sports Med. 2017;45(5):1012–7. https://doi.org/10.1177/0363546516680604.

    Article  PubMed  Google Scholar 

  53. • Crossley KM, Stefanik JJ, Selfe J, et al. 2016 patellofemoral pain consensus statement from the 4th international patellofemoral pain research retreat, Manchester. Part 1: terminology, definitions, clinical examination, natural history, patellofemoral osteoarthritis and patient-reported outcome measures. Br J Sports Med. 2016;50(14):839–43. https://doi.org/10.1136/bjsports-2016-096384. Recent consensus statement at the 4th International Patellofemora Pain Research Retreat.

  54. Walker T, Perkinson B, Mihalko WM. Patellofemoral arthroplasty: the other unicompartmental knee replacement. J Bone Joint Surg Am. 2012;94(18):1712–20.

    Article  PubMed  Google Scholar 

  55. Leslie IJ, Bentley G. Arthroscopy in the diagnosis of chondromalacia patellae. Ann Rheum Dis. 1978;37:540–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Grelsamer RP. Patellar malalignment. J Bone Joint Surg Am. 2000;82:1639–50.

    Article  CAS  PubMed  Google Scholar 

  57. Sheehan FT, Derasari A, Fine KM, et al. Q-angle and J-sign: indicative of maltracking subgroups in patellofemoral pain. Clin Orthop Relat Res. 2010;468:266–75.

    Article  PubMed  Google Scholar 

  58. Ye Q, Yu T, Wu Y, Ding X, X. Gong patellar instability: the reliability of magnetic resonance imaging measurement parameters. BMC Musculoskelet Disord. 2019;20:317.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Zikria B, Rinaldi J, Guermazi A, et al. Lateral patellar tilt and its longitudinal association with patellofemoral osteoarthritis-related structural damage: analysis of the osteoarthritis initiative data. Knee. 2020;27(6):1971–9. https://doi.org/10.1016/j.knee.2020.11.002.

    Article  PubMed  Google Scholar 

  60. Ye Q, Yu T, Wu Y, Ding X, Gong X. Patellar instability: the reliability of magnetic resonance imaging measurement parameters. BMC Musculoskelet Disord. 2019;20:317.

    Article  PubMed  PubMed Central  Google Scholar 

  61. van Jonbergen HP, Poolman RW, van Kampen A. Isolated patellofemoral osteoarthritis. Acta Orthop. 2010;81:199–205.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Haj-Mirzaian A, Thawait GK, Tanaka MJ, S. Demehri diagnosis and characterization of patellofemoral instability: review of available imaging modalities. Sports Med Arthroscopy Rev. 2017;25:64–71.

    Article  Google Scholar 

  63. Caton JH, Dejour D. Tibial tubercle osteotomy in patello-femoral instability and in patellar height abnormality. Int Orthop. 2010;34(2):305–9. https://doi.org/10.1007/s00264-009-0929-4.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Harrison MM, Cooke TDV, Fisher SB, Griffin MP. Patterns of knee arthrosis and patellar subluxation. Clin Orthop. 1994;309 (pg:56–63.

  65. Berruto M., Ferrua P., Tradati D., Maione A., Usellini E. (2020) Imaging analysis of patella instability factors. In: Dejour D., Zaffagnini S., Arendt E., Sillanpää P., Dirisamer F. (eds) Patellofemoral pain, instability, and arthritis. Springer, Berlin, Heidelberg. https://doi-org.laneproxy.stanford.edu/10.1007/978-3-662-61097-8_4

  66. Hurley M, Dickson K, Hallett R, et al. Exercise interventions and patient beliefs for people with hip, knee or hip and knee osteoarthritis: a mixed methods review. Cochrane Database Syst Rev 2018;(4). https://doi.org/10.1002/14651858.CD010842.pub2

  67. Uritani D, Koda H, Sugita S. Effects of self-management education programmes on self-efficacy for osteoarthritis of the knee: a systematic review of randomised controlled trials. BMC Musculoskelet Disord. 2021;22:515. https://doi.org/10.1186/s12891-021-04399-y.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Kroon FP, van der Burg LR, Buchbinder R, Osborne RH, Johnston RV, Pitt V. Self-management education programmes for osteoarthritis. Cochrane Database Syst Rev. 2014;(1). https://doi.org/10.1002/14651858.CD008963.pub2.

  69. Whittaker JL, Truong LK, Dhiman K, Beck C. Osteoarthritis year in review 2020: rehabilitation and outcomes. Osteoarthr Cartil. 2021;29(2):190–207. https://doi.org/10.1016/j.joca.2020.10.005.

    Article  CAS  Google Scholar 

  70. Holden MA, Button K, Collins NJ, et al. Guidance for implementing best practice therapeutic exercise for people with knee and hip osteoarthritis: what does the current evidence base tell us? Arthritis Care Res (Hoboken). Published online August. 2020;29. https://doi.org/10.1002/acr.24434.

  71. Li R, Chen H, Feng J, et al. Effectiveness of traditional Chinese exercise for symptoms of knee osteoarthritis: a systematic review and meta-analysis of randomized controlled trials. Int J Environ Res Public Health. 2020;17(21):E7873. https://doi.org/10.3390/ijerph17217873.

    Article  PubMed  Google Scholar 

  72. Hu L, Wang Y, Liu X, et al. Tai chi exercise can ameliorate physical and mental health of patients with knee osteoarthritis: systematic review and meta-analysis. Clin Rehabil. 2021;35(1):64–79. https://doi.org/10.1177/0269215520954343.

    Article  PubMed  Google Scholar 

  73. Fransen M, McConnell S, Harmer AR, Esch MV der, Simic M, Bennell KL. Exercise for osteoarthritis of the knee. Cochrane Database Syst Rev 2015;(1). https://doi.org/10.1002/14651858.CD004376.pub3

  74. Bartels EM, Juhl CB, Christensen R, et al. Aquatic exercise for the treatment of knee and hip osteoarthritis. Cochrane Database Syst Rev. 2016;(3). https://doi.org/10.1002/14651858.CD005523.pub3.

  75. Luan L, Bousie J, Pranata A, Adams R, Han J. Stationary cycling exercise for knee osteoarthritis: a systematic review and meta-analysis. Clin Rehabil. 2021;35(4):522–33. https://doi.org/10.1177/0269215520971795.

    Article  PubMed  Google Scholar 

  76. Panunzi S, Maltese S, De Gaetano A, Capristo E, Bornstein SR, Mingrone G. Comparative efficacy of different weight loss treatments on knee osteoarthritis: a network meta-analysis. Obes Rev. 2021;22(8):e13230. https://doi.org/10.1111/obr.13230.

    Article  PubMed  Google Scholar 

  77. An S, Li J, Xie W, Yin N, Li Y, Hu Y. Extracorporeal shockwave treatment in knee osteoarthritis: therapeutic effects and possible mechanism. Biosci Rep. 2020;40(11). https://doi.org/10.1042/BSR20200926.

  78. Schmitz C, Császár NBM, Milz S, Schieker M, Maffulli N, Rompe J-D, et al. Efficacy and safety of extracorporeal shock wave therapy for orthopedic conditions: a systematic review on studies listed in the PEDro database. Br Med Bull. 2015;116(1):115–38. https://doi.org/10.1093/bmb/ldv047.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mamura M, Alamino S, Hsing WT, Alfieri FM, Schmitz C, Battistella LR. Radial extracorporeal shock wave therapy for disabling pain due to severe primary knee osteoarthritis. J Rehabil Med. 2017;49(1):54–62. https://doi.org/10.2340/16501977-2148.

    Article  Google Scholar 

  80. Ogden JA, Toth-Kischkat A, Schultheiss R. Principles of shock wave therapy. Clin Orthop Relat Res. 2001;387:8–17. https://doi.org/10.1097/00003086-200106000-00003.

    Article  Google Scholar 

  81. Wang C-J. Extracorporeal shockwave therapy in musculoskeletal disorders. J Orthop Surg Res. 2012;7(1):11. https://doi.org/10.1186/1749-799X-7-11.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Wang C-J, Hsu S-L, Weng L-H, Sun Y-C, Wang F-S. Extracorporeal shockwave therapy shows a number of treatment related chondroprotective effect in osteoarthritis of the knee in rats. BMC Musculoskelet Disord. 2013;14:44–4. https://doi.org/10.1186/1471-2474-14-44.

  83. Wang CJ, Sun YC, Wong T, Hsu SL, Chou WY, Chang HW. Extracorporeal shockwave therapy shows time-dependent chondroprotective effects in osteoarthritis of the knee in rats. J Surg Res. 2012;178(1):196–205. https://doi.org/10.1016/j.jss.2012.01.010.

    Article  PubMed  Google Scholar 

  84. Moretti B, Iannone F, Notarnicola A, Lapadula G, Moretti L, Patella V, et al. Extracorporeal shock waves down-regulate the expression of interleukin-10 and tumor necrosis factor-alpha in osteoarthritic chondrocytes. BMC Musculoskelet Disord. 2008;9:16–6. https://doi.org/10.1186/1471-2474-9-16.

  85. Zhao Z, Ji H, Jing R, Liu C, Wang M, Zhai L, et al. Extracorporeal shock-wave therapy reduces progression of knee osteoarthritis in rabbits by reducing nitric oxide level and chondrocyte apoptosis. Arch Orthop Trauma Surg. 2012;132(11):1547–53. https://doi.org/10.1007/s00402-012-1586-4.

    Article  PubMed  Google Scholar 

  86. Wang Y-C, Huang H-T, Huang P-J, Liu Z-M, Shih C-L. Efficacy and safety of extracorporeal shockwave therapy for treatment of knee osteoarthritis: a systematic review and meta-analysis. Pain Med. 2020;21(4):822–35. https://doi.org/10.1093/pm/pnz262.

    Article  PubMed  Google Scholar 

  87. Avendaño-Coy J, Comino-Suárez N, Grande-Muñoz J, Avendaño-López C, Gómez-Soriano J. Extracorporeal shockwave therapy improves pain and function in subjects with knee osteoarthritis: a systematic review and meta-analysis of randomized clinical trials. Int J Surg. 2020;82:64–75. https://doi.org/10.1016/j.ijsu.2020.07.055.

    Article  PubMed  Google Scholar 

  88. Ma H, Zhang W, Shi J, Zhou D, Wang J. The efficacy and safety of extracorporeal shockwave therapy in knee osteoarthritis: a systematic review and meta-analysis. Int J Surg. 2020;75:24–34. https://doi.org/10.1016/j.ijsu.2020.01.017.

    Article  PubMed  Google Scholar 

  89. Hsieh C-K, Chang C-J, Liu Z-W, Tai T-W. Extracorporeal shockwave therapy for the treatment of knee osteoarthritis: a meta-analysis. Int Orthop. 2020;44(5):877–84. https://doi.org/10.1007/s00264-020-04489-x.

    Article  PubMed  Google Scholar 

  90. • American Academy of Orthopaedic Surgeons Management of Osteoarthritis of the Knee (Non-Arthroplasty) Evidence-Based Clinical Practice Guideline (3rd Edition). https://www.aaos.org/oak3cpg Published August 31, 2021. Accessed December 04, 2021. AAOS Guidelines on the Management of Osteoarthritis of the Knee.

  91. Brosseau L, Yonge KA, Welch V, et al. Thermotherapy for treatment of osteoarthritis. Cochrane Database Syst Rev 2003;(4). https://doi.org/10.1002/14651858.CD004522

  92. Cushnaghan J, McCarthy C, Dieppe P. Taping the patella medially: a new treatment for osteoarthritis of the knee joint? BMJ. 1994;308(6931):753–5. https://doi.org/10.1136/bmj.308.6931.753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Heddon S, Saulnier N, Mercado J, Shalmiyev M, Berteau J-P. Systematic review shows no strong evidence regarding the use of elastic taping for pain improvement in patients with primary knee osteoarthritis. Medicine (Baltimore). 2021;100(13):e25382. https://doi.org/10.1097/MD.0000000000025382.

    Article  Google Scholar 

  94. Powers C, Ward S, Chan L, Chen Y, Terk M. The effect of bracing on patella alignment and patellofemoral joint contact area, Med Sci Sports Exerc, 2004, vol. 36 (pg. 1226-1232)

  95. Powers C, Ward S, Chen Y, Chan L, Terk M. The effect of bracing on patellofemoral joint stress during free and fast walking, Am J Sports Med, 2004, vol. 32 (pg. 224-231)

  96. Duivenvoorden T, Brouwer RW, van Raaij TM, Verhagen AP, Verhaar JA, Bierma-Zeinstra SM. Braces and orthoses for treating osteoarthritis of the knee. Cochrane Database Syst Rev. 2015;3. https://doi.org/10.1002/14651858.CD004020.pub3.

  97. Rutjes AW, Nüesch E, Sterchi R, Jüni P. Therapeutic ultrasound for osteoarthritis of the knee or hip. Cochrane Database Syst Rev. 2010;1. https://doi.org/10.1002/14651858.CD003132.pub2.

  98. Li S, Yu B, Zhou D, He C, Zhuo Q, Hulme JM. Electromagnetic fields for treating osteoarthritis. Cochrane Database Syst Rev. 2013;12. https://doi.org/10.1002/14651858.CD003523.pub2.

  99. Rutjes AW, Nüesch E, Sterchi R, et al. Transcutaneous electrostimulation for osteoarthritis of the knee. Cochrane Database Syst Rev. 2009;4. https://doi.org/10.1002/14651858.CD002823.pub2.

  100. Manheimer E, Cheng K, Linde K, et al. Acupuncture for peripheral joint osteoarthritis. Cochrane Database Syst Rev. 2010;1. https://doi.org/10.1002/14651858.CD001977.pub2.

  101. Ferlito JV, Pecce SAP, Oselame L, De Marchi T. The blood flow restriction training effect in knee osteoarthritis people: a systematic review and meta-analysis. Clin Rehabil. 2020;34(11):1378–90. https://doi.org/10.1177/0269215520943650.

    Article  PubMed  Google Scholar 

  102. Grantham B, Korakakis V, O’Sullivan K. Does blood flow restriction training enhance clinical outcomes in knee osteoarthritis: a systematic review and meta-analysis. Phys Ther Sport. 2021;49:37–49. https://doi.org/10.1016/j.ptsp.2021.01.014.

    Article  PubMed  Google Scholar 

  103. Regnaux J-P, Lefevre-Colau M-M, Trinquart L, et al. High-intensity versus low-intensity physical activity or exercise in people with hip or knee osteoarthritis. Cochrane Database Syst Rev. 2015;10. https://doi.org/10.1002/14651858.CD010203.pub2.

  104. Bruyere O, et al. An updated algorithm recommendation for the management of knee osteoarthritis from the European Society for Clinical and Economic Aspects of osteoporosis, osteoarthritis and musculoskeletal diseases (ESCEO). Semin Arthritis Rheum. 2019;49:337–50.

    Article  PubMed  Google Scholar 

  105. Bannuru RR, et al. OARSI guidelines for the non-surgical management of knee, hip, and polyarticular osteoarthritis. Osteoarthr Cartil. 2019;27:1578–89.

    Article  CAS  Google Scholar 

  106. Towheed T, Maxwell L, Judd M, Catton M, Hochberg MC, Wells GA. Acetaminophen for osteoarthritis. Cochrane Database Syst Rev. 2006;1. https://doi.org/10.1002/14651858.CD004257.pub2.

  107. Puljak L, Marin A, Vrdoljak D, Markotic F, Utrobicic A, Tugwell P. Celecoxib for osteoarthritis. Cochrane Database Syst Rev. 2017;5. https://doi.org/10.1002/14651858.CD009865.pub2.

  108. Sostres C, Gargallo CJ, Arroyo MT, Lanas A. Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. Best Pract Res Clin Gastroenterol. 2010;24:121–32.

    Article  CAS  PubMed  Google Scholar 

  109. Bhala N, Emberson J, Patrono C, Baigent C, Collaborators CNT. Coxibs and traditional NSAIDs for pain relief – authors’ reply. Lancet. 2014;383:122.

    Article  PubMed  Google Scholar 

  110. 2019 American Geriatrics Society Beers Criteria® Update Expert Panel. American Geriatrics Society 2019 updated AGS Beers Criteria® for potentially inappropriate medication use in older adults. J. Am. Geriatr. Soc. 2019;67:674–94.

  111. Leopoldino AO, Machado GC, Ferreira PH, et al. Paracetamol versus placebo for knee and hip osteoarthritis. Cochrane Database Syst Rev. 2019;2. https://doi.org/10.1002/14651858.CD013273.

  112. April KT, Bisaillon J, Welch V, et al. Tramadol for osteoarthritis. Cochrane Database Syst Rev. 2019;5. https://doi.org/10.1002/14651858.CD005522.pub3.

  113. da Costa BR, Nüesch E, Kasteler R, et al. Oral or transdermal opioids for osteoarthritis of the knee or hip. Cochrane Database Syst Rev. 2014;9. https://doi.org/10.1002/14651858.CD003115.pub4.

  114. Osani MC, Bannuru RR. Efficacy and safety of duloxetine in osteoarthritis: a systematic review and meta-analysis. Korean J Intern Med. 2019;34(5):966–73. https://doi.org/10.3904/kjim.2018.460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Chen L, Gong M, Liu G, Xing F, Liu J, Xiang Z. Efficacy and tolerability of duloxetine in patients with knee osteoarthritis: a meta-analysis of randomised controlled trials. Intern Med J. 2019;49(12):1514–23. https://doi.org/10.1111/imj.14327.

    Article  CAS  PubMed  Google Scholar 

  116. Cameron M, Chrubasik S. Oral herbal therapies for treating osteoarthritis. Cochrane Database Syst Rev. 2014;5. https://doi.org/10.1002/14651858.CD002947.pub2.

  117. Cameron M, Chrubasik S. Topical herbal therapies for treating osteoarthritis. Cochrane Database Syst Rev. 2013;5. https://doi.org/10.1002/14651858.CD010538.

  118. Paultre K, Cade W, Hernandez D, Reynolds J, Greif D, Best TM. Therapeutic effects of turmeric or curcumin extract on pain and function for individuals with knee osteoarthritis: a systematic review. BMJ Open Sport Exerc Med. 2021;7(1):e000935. https://doi.org/10.1136/bmjsem-2020-000935.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Rutjes AW, Nüesch E, Reichenbach S, Jüni P. S-Adenosylmethionine for osteoarthritis of the knee or hip. Cochrane Database Syst Rev. 2009;4. https://doi.org/10.1002/14651858.CD007321.pub2.

  120. da Costa BR, Nüesch E, Reichenbach S, Jüni P, Rutjes AW. Doxycycline for osteoarthritis of the knee or hip. Cochrane Database Syst Rev. 2012;11. https://doi.org/10.1002/14651858.CD007323.pub3.

  121. Levy DM, Petersen KA, Scalley Vaught M, Christian DR, Cole BJ. Injections for knee osteoarthritis: corticosteroids, viscosupplementation, platelet-rich plasma, and autologous stem cells. Arthroscopy. 2018;34:1730–43.

    Article  PubMed  Google Scholar 

  122. MacMahon PJ, Eustace SJ, Kavanagh EC. Injectable corticosteroid and local anesthetic preparations: a review for radiologists. Radiology. 2009;252:647–61.

    Article  PubMed  Google Scholar 

  123. Chatham WW, Kimberly RP. Treatment of lupus with corticosteroids. Lupus. 2001;10:140–7.

    Article  CAS  PubMed  Google Scholar 

  124. Jüni P, Hari R, Rutjes AW, et al. Intra-articular corticosteroid for knee osteoarthritis. Cochrane Database Syst Rev. 2015;10. https://doi.org/10.1002/14651858.CD005328.pub3.

  125. Nuelle CW, Cook CR, Stoker AM, Cook JL, Sherman SL. In vivo toxicity of local anesthetics and corticosteroids on supraspinatus tenocyte cell viability and metabolism. Iowa Orthop J. 2018;38:107–12.

    PubMed  PubMed Central  Google Scholar 

  126. Sherman SL, Khazai RS, James CH, Stoker AM, Flood DL, Cook JL. In vitro toxicity of local anesthetics and corticosteroids on chondrocyte and synoviocyte viability and metabolism. Cartilage. 2015;6(4):233–40. https://doi.org/10.1177/1947603515594453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Nuelle CW, Cook CR, Stoker AM, Cook JL, Sherman SL. In vitro toxicity of local anaesthetics and corticosteroids on supraspinatus tenocyte viability and metabolism. J Orthop Translat. 2017;8:20–4. https://doi.org/10.1016/j.jot.2016.08.002.

    Article  PubMed  Google Scholar 

  128. Gupta RC, Lall R, Srivastava A, Sinha A. Hyaluronic acid: molecular mechanisms and therapeutic trajectory. Front Vet Sci. 2019;6:192. https://doi.org/10.3389/fvets.2019.00192.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Clarke S, Lock V, Duddy J, Sharif M, Newman JH, Kirwan JR. Intra-articular hylan G-F 20 (Synvisc) in the management of patellofemoral osteoarthritis of the knee (POAK). Knee. 2005;12(1):57–62. https://doi.org/10.1016/j.knee.2004.03.002.

    Article  PubMed  Google Scholar 

  130. Conrozier T, Monfort J, Chevalier X, et al. EUROVISCO recommendations for optimizing the clinical results of viscosupplementation in osteoarthritis. Cartilage. 2020;11(1):47–59. https://doi.org/10.1177/1947603518783455.

    Article  PubMed  Google Scholar 

  131. Viscosupplementation for the treatment of osteoarthritis of the knee. https://doi.org/10.1002/14651858.CD005321.pub2

  132. Belk JW, Kraeutler MJ, Houck DA, Goodrich JA, Dragoo JL, McCarty EC. Platelet-rich plasma versus hyaluronic acid for knee osteoarthritis: a systematic review and meta-analysis of randomized controlled trials. Am J Sports Med. 2021;49(1):249–60. https://doi.org/10.1177/0363546520909397.

    Article  PubMed  Google Scholar 

  133. Tan SHS, Kwan YT, Neo WJ, et al. Intra-articular injections of mesenchymal stem cells without adjuvant therapies for knee osteoarthritis: a systematic review and meta-analysis. Am J Sports Med. Published online January 20, 2021:363546520981704. https://doi.org/10.1177/0363546520981704

  134. Wang J, Zhou L, Zhang Y, Huang L, Shi Q. Mesenchymal stem cells - a promising strategy for treating knee osteoarthritis. Bone Joint Res. 2020;9(10):719–28. https://doi.org/10.1302/2046-3758.910.BJR-2020-0031.R3.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Bone marrow concentrate injections for the treatment of osteoarthritis: evidence from preclinical findings to the clinical application - PubMed. Accessed August 10, 2021. https://pubmed-ncbi-nlm-nih-gov.laneproxy.stanford.edu/32661635/

  136. Cotter EJ, Wang KC, Yanke AB, Chubinskaya S. Bone marrow aspirate concentrate for cartilage defects of the knee: from bench to bedside evidence. Cartilage. 2018;9(2):161–70. https://doi.org/10.1177/1947603517741169.

    Article  CAS  PubMed  Google Scholar 

  137. Administration FaD (2017) Regulatory considerations for human cells, tissues, and cellular and tissuebased products: minimal manipulation and homologous use.

  138. Shapiro SA, Arthurs JR, Heckman MG, et al. Quantitative T2 MRI mapping and 12-month follow-up in a randomized, blinded, placebo controlled trial of bone marrow aspiration and concentration for osteoarthritis of the knees. Cartilage. 2019;10:432–43. https://doi.org/10.1177/1947603518796142.

    Article  CAS  PubMed  Google Scholar 

  139. Centeno C, Sheinkop M, Dodson E, et al. A specific protocol of autologous bone marrow concentrate and platelet products versus exercise therapy for symptomatic knee osteoarthritis: a randomized controlled trial with 2 year follow-up. J Transl Med. 2018;16:355. https://doi.org/10.1186/s12967-018-1736-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hernigou P, Auregan JC, Dubory A, Flouzat-Lachaniette CH, Chevallier N, Rouard H. Subchondral stem cell therapy versus contralateral total knee arthroplasty for osteoarthritis following secondary osteonecrosis of the knee. Int Orthop. 2018;42:2563–71. https://doi.org/10.1007/s00264-018-3916-9.

    Article  PubMed  Google Scholar 

  141. Aoki KR. Review of a proposed mechanism for the antinociceptive action of botulinum toxin type a. Neurotoxicology. 2005;26:785–93. https://doi.org/10.1016/j.neuro.2005.01.017.

    Article  CAS  PubMed  Google Scholar 

  142. Zhai S, Huang B, Yu K. The efficacy and safety of botulinum toxin type a in painful knee osteoarthritis: a systematic review and meta-analysis. J Int Med Res. 2020;48(4):300060519895868. https://doi.org/10.1177/0300060519895868.

    Article  CAS  PubMed  Google Scholar 

  143. Courseau M, Salle PV, Ranoux D, de Pouilly Lachatre A. Efficacy of intra-articular botulinum toxin in osteoarticular joint pain: a meta-analysis of randomized controlled trials. Clin J Pain. 2018;34(4):383–9. https://doi.org/10.1097/AJP.0000000000000538.

    Article  PubMed  Google Scholar 

  144. Zhang H, Wang B, He J, Du Z. Efficacy and safety of radiofrequency ablation for treatment of knee osteoarthritis: a meta-analysis of randomized controlled trials. J Int Med Res. 2021;49(4):03000605211006647. https://doi.org/10.1177/03000605211006647.

    Article  PubMed Central  Google Scholar 

  145. Panni AS, Tartarone M, Patricola A, Paxton EW, Fithian DC. Long-term results of lateral retinacular release. Arthroscopy. 2005;21(5):526–31. https://doi.org/10.1016/j.arthro.2005.01.007.

    Article  PubMed  Google Scholar 

  146. Unal B, Hinckel BB, Sherman SL, Lattermann C. Comparison of lateral retinaculum release and lengthening in the treatment of patellofemoral disorders. Am J Orthop (Belle Mead NJ). 2017;46(5):224–8.

    Google Scholar 

  147. Carofino BC, Fulkerson JP. Anteromedialization of the tibial tubercle for patellofemoral arthritis in patients > 50 years. J Knee Surg. 2008;21(2):101–5. https://doi.org/10.1055/s-0030-1247803.

    Article  PubMed  Google Scholar 

  148. Chahla J, Hinckel BB, Yanke AB, et al. An expert consensus statement on the Management of Large Chondral and Osteochondral Defects in the patellofemoral joint. Orthop J Sports Med. 2020;8(3):2325967120907343. https://doi.org/10.1177/2325967120907343.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Torga Spak R, Teitge RA. Fresh osteochondral allografts for patellofemoral arthritis: long-term followup. Clin Orthop Relat Res. 2006;444:193–200. https://doi.org/10.1097/01.blo.0000201152.98830.ed.

    Article  PubMed  Google Scholar 

  150. Chahla J, Sweet MC, Okoroha KR, et al. Osteochondral allograft transplantation in the patellofemoral joint: a systematic review. Am J Sports Med. 2019;47(12):3009–18. https://doi.org/10.1177/0363546518814236.

    Article  PubMed  Google Scholar 

  151. Farr J, Barrett D. Optimizing patellofemoral arthroplasty. Knee. 2008;15(5):339–47. https://doi.org/10.1016/j.knee.2008.05.008.

    Article  PubMed  Google Scholar 

  152. Middleton SWF, Toms AD, Schranz PJ, Mandalia VI. Mid-term survivorship and clinical outcomes of the Avon patellofemoral joint replacement. Knee. 2018;25(2):323–8. https://doi.org/10.1016/j.knee.2018.01.007.

    Article  CAS  PubMed  Google Scholar 

  153. Joseph MN, Achten J, Parsons NR, Costa ML. PAT trial Collaborators. The PAT randomized clinical trial. Bone Joint J. 2020;102-B(3):310–8. https://doi.org/10.1302/0301-620X.102B3.BJJ-2019-0723.R1.

    Article  PubMed  Google Scholar 

  154. Elbardesy H, McLeod A, Gul R, Harty J. Midterm results of modern patellofemoral arthroplasty versus total knee arthroplasty for isolated patellofemoral arthritis: systematic review and meta-analysis of comparative studies. Arch Orthop Trauma Surg Published online April. 2021;7. https://doi.org/10.1007/s00402-021-03882-4.

  155. Peng G, Liu M, Guan Z, et al. Patellofemoral arthroplasty versus total knee arthroplasty for isolated patellofemoral osteoarthritis: a systematic review and meta-analysis. J Orthop Surg Res. 2021;16(1):264. https://doi.org/10.1186/s13018-021-02414-5.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Kuwabara.

Additional information

Declarations

Conflict of Interest

Dr. Seth Sherman reports personal fees from Arthrex, personal fees from BioVentus, personal fees from Joint Restoration Foundation, personal fees from Kinamed, personal fees from NewClip, personal fees from Conmed, personal fees from Smith & Nephew, personal fees from Vericel, personal fees from Vivorte, personal fees from Reparel, personal fees from Sarcio, and personal fees from Epic Bio, outside the submitted work. Dr. Anne Kuwabara, Dr. Mark Cinque, and Ms. Taylor Ray do not have any disclosures.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Non-Operative Management of Anterior Knee Pain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuwabara, A., Cinque, M., Ray, T. et al. Treatment Options for Patellofemoral Arthritis. Curr Rev Musculoskelet Med 15, 90–106 (2022). https://doi.org/10.1007/s12178-022-09740-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-022-09740-z

Keywords

Navigation