Skip to main content

Advertisement

Log in

The Use of Biologics for Hip Preservation

  • Hot Topics
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

A wide array of nonoperative modalities to treat hip pain are aimed at restoring and maintaining the structural and physiologic characteristics of the joint. The purpose of this review is to describe the current understanding of biologics in hip pathology by providing an evidence-based overview of treatment modalities available for orthopedic surgeons.

Recent Findings

The use of biologics as a primary treatment or adjunct to traditional management has shown encouraging results for the treatment of hip pain. Studies have demonstrated safety with minimal complications when using platelet rich plasma, hyaluronic acid, or stem cells to treat hip pain caused by osteoarthritis, femoroacetabular impingement syndrome, tendinopathy, or osteonecrosis of the femoral head. Several studies have been able to demonstrate meaningful clinical results that can improve treatment standards for hip pain; however, more work must be performed to better delineate the appropriate protocols, indications, and limitations of each modality.

Summary

Recent advances have inspired renewed interest in biologics for patients with hip pain. We present a concise review of platelet rich plasma, hyaluronic acid, stem cells, and matrix metalloprotease inhibitors and their applicability to hip preservation surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Moss AS, Murphy LB, Helmick CG et al. Annual incidence rates of hip symptoms and three hip OA outcomes from a U.S. population-based cohort study: the Johnston County Osteoarthritis Project. Osteoarthr Cartil. 2016;24:9.

  2. Poultsides LA, Asheesh Bedi BTK. An algorithmic approach to mechanical hip pain. HSS J. 2012;8:11.

    Article  Google Scholar 

  3. Birnbaum K, Prescher A, Hessler S, et al. The sensory innervation of the hip joint--an anatomical study. Surg Radiol Anat. 1997;19:371–5. https://doi.org/10.1007/BF01628504.

    Article  CAS  PubMed  Google Scholar 

  4. Adler KL, Cook PC, Yen Y-M, et al. Current concepts in hip preservation surgery: part I. Sports Health. 2015;7:8.

    Article  Google Scholar 

  5. Griffin DR, Dickenson EJ, O'Donnell J et al. The Warwick Agreement on femoroacetabular impingement syndrome (FAI syndrome): an international consensus statement. Br J Sports Med. 2016;50:8.

  6. Ganz R, Parvizi J, Beck M, et al. Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res. 2003;8.

  7. Marx RE. Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent. 2001;10:3.

    Article  Google Scholar 

  8. Bowman S, Awad ME, Hamrick MW, et al. Recent advances in hyaluronic acid based therapy for osteoarthritis. Clin Transl Med. 2018;7:6.

    Article  Google Scholar 

  9. Saltzman BM, Kuhns BD, Weber AE et al. Stem Cells in Orthopedics: A Comprehensive Guide for the General Orthopedist. Am J Orthop (Belle Mead NJ). 2016;45:46.

  10. Benjamin M, Khalil R. Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. HSS J. 2011;80.

  11. Goldstein RY, Kaye ID, Slover J, et al. Hip dysplasia in the skeletally mature patient. Bull Hosp Jt Dis. 2014;72:14.

    Google Scholar 

  12. Cooperman DR, Wallensten R, Stulberg SD. Acetabular dysplasia in the adult. Clin Orthop Relat Res. 1983;175:6.

    Google Scholar 

  13. Domb BG, Philippon MJ, Giordano BD. Arthroscopic capsulotomy, capsular repair, and capsular plication of the hip: relation to atraumatic instability. Arthroscopy. 2013;29:11.

    Article  Google Scholar 

  14. Fujii M, Nakashima Y, Jingushi S, et al. Intraarticular findings in symptomatic developmental dysplasia of the hip. J Pediatr Orthop. 2009;29:4.

    Article  Google Scholar 

  15. Matheney T, Sandell L, Foucher K, et al. Motion analysis, cartilage mechanics, and biology in femoroacetabular impingement: current understanding and areas of future research. J Am Acad Orthop Surg. 2013;21:5.

    Google Scholar 

  16. Ecker TM, Tannast M, Puls M, et al. Pathomorphologic alterations predict presence or absence of hip osteoarthrosis. Clin Orthop Relat Res. 2007;8.

  17. Ganz R, Leunig M, Leunig-Ganz K, et al. The etiology of osteoarthritis of the hip: an integrated mechanical concept. Clin Orthop Relat Res. 2008;8.

  18. Botser IB, Ozoude GC, Martin DE, et al. Femoral anteversion in the hip: comparison of measurement by computed tomography, magnetic resonance imaging, and physical examination. Arthroscopy. 2012;28:8.

    Article  Google Scholar 

  19. Albers CE, Wambeek N, Hanke MS, Schmaranzer F, Prosser GH, Yates PJ. Imaging of femoroacetabular impingement-current concepts. J Hip Preserv Surg. 2016;3:245–61. https://doi.org/10.1093/jhps/hnw035.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dhillon MS, Behera P, Patel S, et al. Orthobiologics and platelet rich plasma. Indian J Orthop. 2014;48:8.

    Google Scholar 

  21. Eppley BL, Pietrzak WS, Blanton M. Platelet-rich plasma: a review of biology and applications in plastic surgery. Plast Reconstr Surg. 2006;12.

  22. Pavlovic V, Ciric M, Jovanovic V, et al. Platelet rich plasma: a short overview of certain bioactive components. Open Med (Wars). 2016;11:5.

    Google Scholar 

  23. Engebretsen L, Steffen K, Alsousou J et al. IOC consensus paper on the use of platelet-rich plasma in sports medicine. Br J Sports Med. 2010;44:9.

  24. Cavallo C, Roffi A. Grigolo B et al. The Choice of Activation Method Affects the Release of Bioactive Molecules. Biomed Res Int: Platelet-Rich Plasma; 2016.

    Google Scholar 

  25. Eisinger F, Patzelt J. Langer HF. Front Med (Lausanne): The Platelet Response to Tissue Injury; 2018.

    Google Scholar 

  26. Toyoda T, Isobe K, Tsujino T, Koyata Y, Ohyagi F, Watanabe T, et al. Direct activation of platelets by addition of CaCl 2 leads coagulation of platelet-rich plasma. Int J Implant Dent. 2018;4:23.

    Article  Google Scholar 

  27. Yun S-H, Sim E-H. Goh R-Y et al. The Mechanisms and Potential Biomarkers. Biomed Res Int: Platelet Activation; 2016.

    Google Scholar 

  28. Mannava S, Chahla J, Geeslin AG, et al. Platelet-rich plasma augmentation for hip arthroscopy. Arthrosc Tech. 2017;6:5.

    Google Scholar 

  29. DeLong JM, Russell RP, Mazzocca AD. Platelet-rich plasma: the PAW classification system. Arthroscopy. 2012;28:11.

    Article  Google Scholar 

  30. Everts PA, Overdevest EP, Jakimowicz JJ, et al. The use of autologous platelet-leukocyte gels to enhance the healing process in surgery, a review. Surg Endosc. 2007;21:5.

    Article  Google Scholar 

  31. Mishra A, Harmon K, Woodall J, et al. Sports medicine applications of platelet rich plasma. Curr Pharm Biotechnol. 2012;13:10.

    Article  Google Scholar 

  32. Hamid MSA, Ali MRM, Yusof A, et al. Platelet-rich plasma injections for the treatment of hamstring injuries: a randomized controlled trial. Am J Sports Med. 2014;42:8.

    Article  Google Scholar 

  33. Fitzpatrick J, Bulsara MK, O'Donnell J et al. The effectiveness of platelet-rich plasma injections in gluteal Tendinopathy: a randomized, double-blind controlled trial comparing a single platelet-rich plasma injection with a single corticosteroid injection. Am J Sports Med. 2018;46:6. Current level 1 evidence examining the use of PRP versus corticosteroid injections in the treatment of teninopathy. Patients in the PRP group saw symptomatic improvements over the corticosteroid group.

  34. Chahal J, Thiel GSV. 3rd RCM et al. The Patient Acceptable Symptomatic State for the Modified Harris Hip Score and Hip Outcome Score Among Patients Undergoing Surgical Treatment for Femoroacetabular Impingement Am J Sports Med. 2015;43:5.

    Google Scholar 

  35. Fitzpatrick J, Bulsara MK, O'Donnell J et al. Leucocyte-Rich Platelet-Rich Plasma Treatment of Gluteus Medius and Minimus Tendinopathy: A Double-Blind Randomized Controlled Trial With 2-Year Follow-up. Am J Sports Med. 2019;47:7. Fitzpatrick et al. provided level 1 evidence in a randomized control trial examining PRP verus Corticosteroids in glute tendinopathy with two year follow and found patients in the PRP group had improved outcomes over the steroid group.

  36. Thompson G, Pearson JF. No attributable effects of PRP on greater trochanteric pain syndrome. N Z Med J. 2019:10. An evaluation of the management of trochanteric pain with PRP or placebo. Demonstrated that at 12 month follow-up there was no significant difference in BPI pain scores between cohorts.

  37. Redmond JM, Gupta A, Stake CE, et al. Clinical results of hip arthroscopy for labral tears: a comparison between intraoperative platelet-rich plasma and bupivacaine injection. Arthroscopy. 2015;31:8.

    Google Scholar 

  38. Rafols C, Monckeberg JE, Numair J, et al. Platelet-rich plasma augmentation of arthroscopic hip surgery for Femoroacetabular impingement: a prospective study with 24-month follow-up. Arthroscopy. 2015;31:6.

    Article  Google Scholar 

  39. LaFrance R, Kenney R, Giordano B, et al. The effect of platelet enriched plasma on clinical outcomes in patients with femoroacetabular impingement following arthroscopic labral repair and femoral neck osteoplasty. J Hip Preserv Surg. 2015;2:5.

    Article  Google Scholar 

  40. Battaglia M, Guaraldi F, Vannini F, et al. Efficacy of ultrasound-guided intra-articular injections of platelet-rich plasma versus hyaluronic acid for hip osteoarthritis. Orthopedics. 2013;36:7.

    Article  Google Scholar 

  41. Sante LD, Villani C, Santilli V, et al. Intra-articular hyaluronic acid vs platelet-rich plasma in the treatment of hip osteoarthritis. Med Ultrason. 2016;18:5.

    Article  Google Scholar 

  42. Dallari D, Stagni C, Rani N, et al. Ultrasound-guided injection of platelet-rich plasma and hyaluronic acid, separately and in combination, for hip osteoarthritis: a randomized controlled study. Am J Sports Med. 2016;44:7.

    Article  Google Scholar 

  43. Goa KL, Benfield P. Hyaluronic acid. A review of its pharmacology and use as a surgical aid in ophthalmology, and its therapeutic potential in joint disease and wound healing. Drugs. 1994;47:536–66. https://doi.org/10.2165/00003495-199447030-00009.

    Article  CAS  PubMed  Google Scholar 

  44. Kogan G, Soltes L, Stern R, et al. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett. 2007;29:17–25. https://doi.org/10.1007/s10529-006-9219-z.

    Article  CAS  PubMed  Google Scholar 

  45. Gerecht S, Burdick JA, Ferreira LS, Townsend SA, Langer R, Vunjak-Novakovic G. Hyaluronic acid hydrogel for controlled self-renewal and differentiation of human embryonic stem cells. Proc Natl Acad Sci U S A. 2007;104:11298–303. https://doi.org/10.1073/pnas.0703723104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Smith MM, Russell AK, Schiavinato A, Little CB. A hexadecylamide derivative of hyaluronan (HYMOVIS(R)) has superior beneficial effects on human osteoarthritic chondrocytes and synoviocytes than unmodified hyaluronan. J Inflamm (Lond). 2013;10:26. https://doi.org/10.1186/1476-9255-10-26.

    Article  CAS  Google Scholar 

  47. Band PA, Heeter J, Wisniewski HG, Liublinska V, Pattanayak CW, Karia RJ, et al. Hyaluronan molecular weight distribution is associated with the risk of knee osteoarthritis progression. Osteoarthr Cartil. 2015;23:70–6. https://doi.org/10.1016/j.joca.2014.09.017.

    Article  CAS  Google Scholar 

  48. Migliore A, Frediani B, Gigliucci G, Foti C, Crimaldi S, de Lucia O, et al. Efficacy of a single intra-articular HYMOVIS ONE injection for managing symptomatic hip osteoarthritis: a 12-month follow-up retrospective analysis of the ANTIAGE register data. Orthop Res Rev. 2020;12:19–26. https://doi.org/10.2147/ORR.S239355.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pogliacomi F, Schiavi P, Paraskevopoulos A et al. When is indicated viscosupplementation in hip osteoarthritis? Acta Biomed. 2018;90:67–74. DOI: https://doi.org/10.23750/abm.v90i1-S.8000. A case series evaluating viscopplementation for hip osteoarthritis, that found improved patient reported outcome scores at 3 months and 6 months following treatment when compared to baseline measures.

  50. Migliore A, Massafra U, Bizzi E, Vacca F, Martin-Martin S, Granata M, et al. Comparative, double-blind, controlled study of intra-articular hyaluronic acid (Hyalubrix) injections versus local anesthetic in osteoarthritis of the hip. Arthritis Res Ther. 2009;11:R183. https://doi.org/10.1186/ar2875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ye Y, Zhou X, Mao S et al. Platelet rich plasma versus hyaluronic acid in patients with hip osteoarthritis: A meta-analysis of randomized controlled trials. Int J Surg. 2018;53:279–87. DOI: https://doi.org/10.1016/j.ijsu.2018.03.078. A meta-analysis of RCTs comparing PRP and HA for patients with hip OA. They found that intraarticular PRP demonstrated statistically significant lower VAS scores at 2 months compared to HA.

  52. Brander V, Skrepnik N, Petrella RJ et al. Evaluating the use of intra-articular injections as a treatment for painful hip osteoarthritis: a randomized, double-blind, multicenter, parallel-group study comparing a single 6-mL injection of hylan G-F 20 with saline. Osteoarthritis Cartilage. 2019;27:59–70. DOI: https://doi.org/10.1016/j.joca.2018.08.018. A multicenter, double-blind RCT with patients who had painful hip OA comparing a HA injection to a placebo injection. They demonstrated significant improvement in both the HA and saline cohorts according to the WOMAC-A1.

  53. Abate M, Scuccimarra T, Vanni D, Pantalone A, Salini V. Femoroacetabular impingement: is hyaluronic acid effective? Knee Surg Sports Traumatol Arthrosc. 2014;22:889–92. https://doi.org/10.1007/s00167-013-2581-1.

    Article  PubMed  Google Scholar 

  54. Lee YK, Lee GY, Lee JW, Lee E, Kang HS. Intra-articular injections in patients with Femoroacetabular impingement: a prospective, randomized, double-blind, cross-over study. J Korean Med Sci. 2016;31:1822–7. https://doi.org/10.3346/jkms.2016.31.11.1822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Migliore A, Tormenta S, Lagana B, et al. Safety of intra-articular hip injection of hyaluronic acid products by ultrasound guidance: an open study from ANTIAGE register. Eur Rev Med Pharmacol Sci. 2013;17:1752–9.

    CAS  PubMed  Google Scholar 

  56. Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration. 2013;85:3–10. https://doi.org/10.1159/000345615.

    Article  PubMed  Google Scholar 

  57. Saltzman BM, Kuhns BD, Weber AE, et al. Stem cells in orthopedics: a comprehensive guide for the general orthopedist. Am J Orthop (Belle Mead NJ). 2016;45:280–326.

    Google Scholar 

  58. Mohammadian M, Shamsasenjan K, Lotfi Nezhad P, Talebi M, Jahedi M, Nickkhah H, et al. Mesenchymal stem cells: new aspect in cell-based regenerative therapy. Adv Pharm Bull. 2013;3:433–7. https://doi.org/10.5681/apb.2013.070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chahla J, LaPrade RF, Mardones R, et al. Biological therapies for cartilage lesions in the hip: a new horizon. Orthopedics. 2016;39:e715–23. https://doi.org/10.3928/01477447-20160623-01.

    Article  PubMed  Google Scholar 

  60. Murata Y, Uchida S, Utsunomiya H, Hatakeyama A, Nakashima H, Mori T, et al. Differentiation potential of synovial Mesenchymal stem cells isolated from hip joints affected by Femoroacetabular impingement syndrome versus osteoarthritis. Arthroscopy. 2020;36:2122–33. https://doi.org/10.1016/j.arthro.2020.03.016.

    Article  PubMed  Google Scholar 

  61. Rajabzadeh N, Fathi E, Farahzadi R. Stem cell-based regenerative medicine. Stem Cell Investig. 2019;6:19. DOI: https://doi.org/10.21037/sci.2019.06.04

  62. Sherman AB, Gilger BC, Berglund AK, Schnabel LV. Effect of bone marrow-derived mesenchymal stem cells and stem cell supernatant on equine corneal wound healing in vitro. Stem Cell Res Ther. 2017;8:120. https://doi.org/10.1186/s13287-017-0577-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dall'Oca C, Breda S, Elena N et al. Mesenchymal Stem Cells injection in hip osteoarthritis: preliminary results. Acta Biomed. 2019;90:75–80. DOI: https://doi.org/10.23750/abm.v90i1-S.8084. A cohort study evaluating adipose derived MSC treatment in early-stage hip OA. At 6 months post-operatively, significant improvements were recorded in the patients HHS, WOMAC, and VAS scores.

  64. Rivera E, Seijas R, Rubio M, García-Balletbó M, Vilar JM, Boada PL, et al. Outcomes at 2-years follow-up after hip arthroscopy combining bone marrow concentrate. J Investig Surg. 2020;33:655–63. https://doi.org/10.1080/08941939.2018.1535010.

    Article  Google Scholar 

  65. Wang Z, Sun QM, Zhang FQ et al. Core decompression combined with autologous bone marrow stem cells versus core decompression alone for patients with osteonecrosis of the femoral head: A meta-analysis. Int J Surg. 2019;69:23–31. DOI: https://doi.org/10.1016/j.ijsu.2019.06.016. Meta-analysis of 14 RCTs comparing isolated surgical core decompression to bone marrow-derived MSC instilled into the core tract after decompression. Compared with core decompression alone, the MSC group demonstrated significant decrease in VAS score at 6 months.

  66. Malemud CJ. Matrix metalloproteinases (MMPs) in health and disease: an overview. Front Biosci. 2006;11:1696–701. https://doi.org/10.2741/1915.

    Article  CAS  PubMed  Google Scholar 

  67. Murphy G. Tissue inhibitors of metalloproteinases. Genome Biol. 2011;12:233. https://doi.org/10.1186/gb-2011-12-11-233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bluteau G, Conrozier T, Mathieu P, Vignon E, Herbage D, Mallein-Gerin F. Matrix metalloproteinase-1, −3, −13 and aggrecanase-1 and -2 are differentially expressed in experimental osteoarthritis. Biochim Biophys Acta. 2001;1526:147–58. https://doi.org/10.1016/s0304-4165(01)00122-2.

    Article  CAS  PubMed  Google Scholar 

  69. Schon J, Chahla J, Paudel S, Manandhar L, Feltham T, Huard J, et al. Expression profile of matrix metalloproteinases in the labrum of femoroacetabular impingement. Bone Joint Res. 2020;9:173–81. https://doi.org/10.1302/2046-3758.94.BJR-2019-0083.R1.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Maffulli N, Del Buono A, Oliva F, et al. High-volume image-guided injection for recalcitrant patellar Tendinopathy in athletes. Clin J Sport Med. 2016;26:12–6. https://doi.org/10.1097/JSM.0000000000000242.

    Article  PubMed  Google Scholar 

  71. Karsdal MA, Michaelis M, Ladel C, Siebuhr AS, Bihlet AR, Andersen JR, et al. Disease-modifying treatments for osteoarthritis (DMOADs) of the knee and hip: lessons learned from failures and opportunities for the future. Osteoarthr Cartil. 2016;24:2013–21. https://doi.org/10.1016/j.joca.2016.07.017.

    Article  CAS  Google Scholar 

  72. Brandt KD, Mazzuca SA, Katz BP, Lane KA, Buckwalter KA, Yocum DE, et al. Effects of doxycycline on progression of osteoarthritis: results of a randomized, placebo-controlled, double-blind trial. Arthritis Rheum. 2005;52:2015–25. https://doi.org/10.1002/art.21122.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toufic R. Jildeh.

Ethics declarations

Kelechi R. Okoroha reports potential conflicts of interest from the following companies: Arthrex (grand and education), Smith & Nephew (education, travel, lodging), Pinnacle (education), Medwest Associates (education), Wright Medical Technology (travel and lodging), Stryker Corporation (travel and lodging).

Toufic R. Jildeh, Muhammad J. Abbas, and Patrick Buckley declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Institutional Review Board: This project did not require review by the institutional review board.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jildeh, T.R., Abbas, M.J., Buckley, P. et al. The Use of Biologics for Hip Preservation. Curr Rev Musculoskelet Med 14, 145–154 (2021). https://doi.org/10.1007/s12178-021-09695-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-021-09695-7

Keywords

Navigation