Skip to main content

Advertisement

Log in

Current Applications of Growth Factors for Knee Cartilage Repair and Osteoarthritis Treatment

  • Hot Topics
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

The decreased contact area, edge loading, and increased stress in the adjacent area cartilage resulting from chondral defects are believed to predispose this tissue to degenerative changes that have significant economic implications, especially when considering its progression to osteoarthritis of the knee. Growth factors are considered therapeutic possibilities to enhance healing of chondral injuries and modify the progression to degenerative arthritis. Thus, the purposes of this review are to first to summarize important points for defect preparation and recent advances in techniques for marrow stimulation and second, and to identify specific growth factors and cytokines that have the capacity to advance cartilage regeneration and the treatment of osteoarthritis in light of recent laboratory and clinical studies.

Recent Findings

TGF-β, BMP-2, BMP-7, IGF-1, as IL-1 receptor antagonist, and recombinant human FGF-18 are some of the promising growth factor/cytokine treatments with pioneering and evolving clinical developments. The bulk of the review describes and discusses these developments in light of fundamental basic science. It is crucial to also understand the other underlying advances made in the surgical management of cartilage defects prior to onset of OA. These advances are in techniques for defect preparation and marrow stimulation, a common cartilage repair procedure used in combination with growth factor/cytokine augmentation.

Summary

Multiple growth factor/cytokine modulation therapies are currently undergoing clinical trial investigation including Invossa (currently in phase III study), Kineret (currently in phase I study), and Sprifermin (currently in phase II study) for the treatment of symptomatic osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Curl WW, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy. 1997;13(4):456–60.

    Article  CAS  Google Scholar 

  2. Arøen A, Løken S, Heir S, Alvik E, Ekeland A, Granlund OG, et al. Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med. 2004;32(1):211–5.

    Article  Google Scholar 

  3. Hjelle K, Solheim E, Strand T, Muri R, Brittberg M. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy. 2002;18(7):730–4.

    Article  Google Scholar 

  4. Richter W. Mesenchymal stem cells and cartilage in situ regeneration. J Intern Med. 2009;266(4):390–405. https://doi.org/10.1111/j.1365-2796.2009.02153.x.

    Article  CAS  PubMed  Google Scholar 

  5. Blevins FT, Steadman JR, Rodrigo JJ, Silliman J. Treatment of articular cartilage defects in athletes: an analysis of functional outcome and lesion appearance. Orthopedics. 1998;21(7):761–7 discussion 7-8.

    CAS  PubMed  Google Scholar 

  6. Mithoefer K, Gill TJ, Cole BJ, Williams RJ, Mandelbaum BR. Clinical outcome and return to competition after microfracture in the athlete’s knee: an evidence-based systematic review. Cartilage. 2010;1(2):113–20. https://doi.org/10.1177/1947603510366576.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Convery FR, Akeson WH, Keown GH. The repair of large osteochondral defects. An experimental study in horses. Clin Orthop Relat Res. 1972;82:253–62.

    Article  CAS  Google Scholar 

  8. Strauss EJ, Barker JU, Kercher JS, Cole BJ, Mithoefer K. Augmentation strategies following the microfracture technique for repair of focal chondral defects. Cartilage. 2010;1(2):145–52. https://doi.org/10.1177/1947603510366718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jackson DW, Simon TM, Aberman HM. Symptomatic articular cartilage degeneration: the impact in the new millennium. Clin Orthop Relat Res. 2001;(391 Suppl):S14–25.

  10. Endres M, Neumann K, Häupl T, Erggelet C, Ringe J, Sittinger M, et al. Synovial fluid recruits human mesenchymal progenitors from subchondral spongious bone marrow. J Orthop Res. 2007;25(10):1299–307. https://doi.org/10.1002/jor.20394.

    Article  PubMed  Google Scholar 

  11. Ponte AL, Marais E, Gallay N, Langonné A, Delorme B, Hérault O, et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells. 2007;25(7):1737–45. https://doi.org/10.1634/stemcells.2007-0054.

    Article  CAS  Google Scholar 

  12. Ringe J, Strassburg S, Neumann K, Endres M, Notter M, Burmester GR, et al. Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J Cell Biochem. 2007;101(1):135–46. https://doi.org/10.1002/jcb.21172.

    Article  CAS  PubMed  Google Scholar 

  13. Solheim E, Hegna J, Strand T, Harlem T, Inderhaug E. Randomized study of long-term (15-17 years) outcome after microfracture versus mosaicplasty in knee articular cartilage defects. Am J Sports Med. 2017;363546517745281:826–31. https://doi.org/10.1177/0363546517745281.

    Article  Google Scholar 

  14. Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1993;75(4):532–53.

    Article  CAS  Google Scholar 

  15. Brittberg M, Winalski CS. Evaluation of cartilage injuries and repair. J Bone Joint Surg Am. 2003;85-A(Suppl 2):58–69.

    Article  Google Scholar 

  16. Mithoefer K, Williams RJ, Warren RF, Potter HG, Spock CR, Jones EC, et al. Chondral resurfacing of articular cartilage defects in the knee with the microfracture technique. Surgical technique. J Bone Joint Surg Am. 2006;88(Suppl 1 Pt 2):294–304. https://doi.org/10.2106/JBJS.F.00292.

    Article  PubMed  Google Scholar 

  17. Steadman JR, Miller BS, Karas SG, Schlegel TF, Briggs KK, Hawkins RJ. The microfracture technique in the treatment of full-thickness chondral lesions of the knee in National Football League players. J Knee Surg. 2003;16(2):83–6.

    PubMed  Google Scholar 

  18. Bardos T, Vancsodi J, Farkas B, Fazekas A, Nagy SA, Bogner P, et al. Pilot study of cartilage repair in the knee joint with multiply incised chondral allograft. Cartilage. 2015;6(2):73–81. https://doi.org/10.1177/1947603514563596.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Theodoropoulos JS, De Croos JN, Park SS, Pilliar R, Kandel RA. Integration of tissue-engineered cartilage with host cartilage: an in vitro model. Clin Orthop Relat Res. 2011;469(10):2785–95. https://doi.org/10.1007/s11999-011-1856-4.

    Article  PubMed  PubMed Central  Google Scholar 

  20. • Bos PK, Kops N, Verhaar JA, van Osch GJ. Cellular origin of neocartilage formed at wound edges of articular cartilage in a tissue culture experiment. Osteoarthr Cartil. 2008;16(2):204–11. https://doi.org/10.1016/j.joca.2007.06.007This study highlight the importance of the creation of healthy, vertical walls at the defect edge to maximize the tissue response as chondrocytes in the deep zone of articular cartilage are capable of proliferation while retaining their cartilage phenotype and may improve the peripheral integration of the repair tissue.

    Article  CAS  Google Scholar 

  21. Asik M, Ciftci F, Sen C, Erdil M, Atalar A. The microfracture technique for the treatment of full-thickness articular cartilage lesions of the knee: midterm results. Arthroscopy. 2008;24(11):1214–20. https://doi.org/10.1016/j.arthro.2008.06.015.

    Article  PubMed  Google Scholar 

  22. Benthien JP, Behrens P. Reviewing subchondral cartilage surgery: considerations for standardised and outcome predictable cartilage remodelling: a technical note. Int Orthop. 2013;37(11):2139–45. https://doi.org/10.1007/s00264-013-2025-z.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gelse K, Riedel D, Pachowsky M, Hennig FF, Trattnig S, Welsch GH. Limited integrative repair capacity of native cartilage autografts within cartilage defects in a sheep model. J Orthop Res. 2015;33(3):390–7. https://doi.org/10.1002/jor.22773.

    Article  PubMed  Google Scholar 

  24. • Frisbie DD, Morisset S, Ho CP, Rodkey WG, Steadman JR, McIlwraith CW. Effects of calcified cartilage on healing of chondral defects treated with microfracture in horses. Am J Sports Med. 2006;34(11):1824–31. https://doi.org/10.1177/0363546506289882A critical step of defect preparation is debridement of the calcified cartilage as successful removal of the calcified cartilage layer results in improved neocartilage integration.

    Article  PubMed  Google Scholar 

  25. •• Yanke AB, Lee AS, Karas V, Abrams G, Riccio ML, Verma NN, et al. Surgeon ability to appropriately address the calcified cartilage layer: an in vitro study of arthroscopic and open techniques. Am J Sports Med. 2019;47(11):2584–8. https://doi.org/10.1177/0363546519859851Variability has been shown in a surgeon’s ability to reliably remove the calcified cartilage layer.

    Article  PubMed  Google Scholar 

  26. Mithoefer K, Venugopal V, Manaqibwala M. Incidence, degree, and clinical effect of subchondral bone overgrowth after microfracture in the knee. Am J Sports Med. 2016;44(8):2057–63. https://doi.org/10.1177/0363546516645514Study highlighing that care must be taken as excessive debridement of the calcified cartilage may stimulate subchondral bone overgrowth, which can be associated with clinical failure after marrow stimulation.

    Article  PubMed  Google Scholar 

  27. Bark S, Piontek T, Behrens P, Mkalaluh S, Varoga D, Gille J. Enhanced microfracture techniques in cartilage knee surgery: fact or fiction? World J Orthop. 2014;5(4):444–9. https://doi.org/10.5312/wjo.v5.i4.444.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen H, Chevrier A, Hoemann CD, Sun J, Ouyang W, Buschmann MD. Characterization of subchondral bone repair for marrow-stimulated chondral defects and its relationship to articular cartilage resurfacing. Am J Sports Med. 2011;39(8):1731–40. https://doi.org/10.1177/0363546511403282.

    Article  PubMed  Google Scholar 

  29. • Chen H, Hoemann CD, Sun J, Chevrier A, McKee MD, Shive MS, et al. Depth of subchondral perforation influences the outcome of bone marrow stimulation cartilage repair. J Orthop Res. 2011;29(8):1178–84. https://doi.org/10.1002/jor.21386Study highlighting that the depth of subchondral perforation during marrow stimulation influences the outcomes of cartilage repair.

    Article  PubMed  Google Scholar 

  30. • Eldracher M, Orth P, Cucchiarini M, Pape D, Madry H. Small subchondral drill holes improve marrow stimulation of articular cartilage defects. Am J Sports Med. 2014;42(11):2741–50. https://doi.org/10.1177/0363546514547029Study highlighting that the diameter of awl used in marrow stimulation has been correlated with repair tissue quality.

    Article  PubMed  Google Scholar 

  31. Hoemann CD, Gosselin Y, Chen H, Sun J, Hurtig MB, Carli A, et al. Characterization of initial microfracture defects in human condyles. J Knee Surg. 2013;26(5):347–55. https://doi.org/10.1055/s-0033-1341580.

    Article  PubMed  Google Scholar 

  32. Min BH, Choi WH, Lee YS, Park SR, Choi BH, Kim YJ, et al. Effect of different bone marrow stimulation techniques (BSTs) on MSCs mobilization. J Orthop Res. 2013;31(11):1814–9. https://doi.org/10.1002/jor.22380.

    Article  CAS  PubMed  Google Scholar 

  33. Horbelt D, Denkis A, Knaus P. A portrait of transforming growth factor beta superfamily signalling: background matters. Int J Biochem Cell Biol. 2012;44(3):469–74. https://doi.org/10.1016/j.biocel.2011.12.013.

    Article  CAS  PubMed  Google Scholar 

  34. Santo VE, Gomes ME, Mano JF, Reis RL. Controlled release strategies for bone, cartilage, and osteochondral engineering--part I: recapitulation of native tissue healing and variables for the design of delivery systems. Tissue Eng B Rev. 2013;19(4):308–26. https://doi.org/10.1089/ten.TEB.2012.0138.

    Article  CAS  Google Scholar 

  35. Cals FL, Hellingman CA, Koevoet W, Baatenburg de Jong RJ, van Osch GJ. Effects of transforming growth factor-beta subtypes on in vitro cartilage production and mineralization of human bone marrow stromal-derived mesenchymal stem cells. J Tissue Eng Regen Med. 2012;6(1):68–76. https://doi.org/10.1002/term.399.

    Article  CAS  PubMed  Google Scholar 

  36. Fortier LA, Barker JU, Strauss EJ, McCarrel TM, Cole BJ. The role of growth factors in cartilage repair. Clin Orthop Relat Res. 2011;469(10):2706–15. https://doi.org/10.1007/s11999-011-1857-3.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tekari A, Luginbuehl R, Hofstetter W, Egli RJ. Transforming growth factor beta signaling is essential for the autonomous formation of cartilage-like tissue by expanded chondrocytes. PLoS One. 2015;10(3):e0120857. https://doi.org/10.1371/journal.pone.0120857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fan H, Tao H, Wu Y, Hu Y, Yan Y, Luo Z. TGF-beta3 immobilized PLGA-gelatin/chondroitin sulfate/hyaluronic acid hybrid scaffold for cartilage regeneration. J Biomed Mater Res A. 2010;95(4):982–92. https://doi.org/10.1002/jbm.a.32899.

    Article  CAS  PubMed  Google Scholar 

  39. Wang W, Li B, Yang J, Xin L, Li Y, Yin H, et al. The restoration of full-thickness cartilage defects with BMSCs and TGF-beta 1 loaded PLGA/fibrin gel constructs. Biomaterials. 2010;31(34):8964–73. https://doi.org/10.1016/j.biomaterials.2010.08.018.

    Article  CAS  PubMed  Google Scholar 

  40. Noh MJ, Copeland RO, Yi Y, Choi KB, Meschter C, Hwang S, et al. Pre-clinical studies of retrovirally transduced human chondrocytes expressing transforming growth factor-beta-1 (TG-C). Cytotherapy. 2010;12(3):384–93. https://doi.org/10.3109/14653240903470639.

    Article  CAS  PubMed  Google Scholar 

  41. Ahn J, Kim SA, Kim KW, Oh JH, Kim SJ. Optimization of TGF-beta1-transduced chondrocytes for cartilage regeneration in a 3D printed knee joint model. PLoS One. 2019;14(5):e0217601. https://doi.org/10.1371/journal.pone.0217601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ha CW, Noh MJ, Choi KB, Lee KH. Initial phase I safety of retrovirally transduced human chondrocytes expressing transforming growth factor-beta-1 in degenerative arthritis patients. Cytotherapy. 2012;14(2):247–56. https://doi.org/10.3109/14653249.2011.629645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. •• Lee B, Parvizi J, Bramlet D, Romness DW, Guermazi A, Noh M, et al. Results of a phase II study to determine the efficacy and safety of genetically engineered allogeneic human chondrocytes expressing TGF-beta1. J Knee Surg. 2020;33(2):167–72. https://doi.org/10.1055/s-0038-1676803Results of a multicenter, double-blinded, placebo-controlled, and randomized study of adults with Kellgren-Lawrence grade III knee OA demonstrated significant improvements in IKDC and VAS at 104 weeks with less progression of cartilage damage on MRI at 12 months utilizing genetically engineered chondrocytes virally transduced with TGF-β1 [Invossa (TissueGene-C) when compared with the placebo cohort.

    Article  PubMed  Google Scholar 

  44. Guermazi A, Kalsi G, Niu J, Crema MD, Copeland RO, Orlando A, et al. Structural effects of intra-articular TGF-beta1 in moderate to advanced knee osteoarthritis: MRI-based assessment in a randomized controlled trial. BMC Musculoskelet Disord. 2017;18(1):461. https://doi.org/10.1186/s12891-017-1830-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lam J, Lu S, Kasper FK, Mikos AG. Strategies for controlled delivery of biologics for cartilage repair. Adv Drug Deliv Rev. 2015;84:123–34. https://doi.org/10.1016/j.addr.2014.06.006.

    Article  CAS  PubMed  Google Scholar 

  46. Fan J, Gong Y, Ren L, Varshney RR, Cai D, Wang DA. In vitro engineered cartilage using synovium-derived mesenchymal stem cells with injectable gellan hydrogels. Acta Biomater. 2010;6(3):1178–85. https://doi.org/10.1016/j.actbio.2009.08.042.

    Article  CAS  PubMed  Google Scholar 

  47. Sellers RS, Peluso D, Morris EA. The effect of recombinant human bone morphogenetic protein-2 (rhBMP-2) on the healing of full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1997;79(10):1452–63.

    Article  CAS  Google Scholar 

  48. Lopiz-Morales Y, Abarrategi A, Ramos V, Moreno-Vicente C, Lopez-Duran L, Lopez-Lacomba JL, et al. In vivo comparison of the effects of rhBMP-2 and rhBMP-4 in osteochondral tissue regeneration. Eur Cell Mater. 2010;20:367–78.

    Article  CAS  Google Scholar 

  49. Gouttenoire J, Valcourt U, Ronziere MC, Aubert-Foucher E, Mallein-Gerin F, Herbage D. Modulation of collagen synthesis in normal and osteoarthritic cartilage. Biorheology. 2004;41(3–4):535–42.

    CAS  PubMed  Google Scholar 

  50. • Yang HS, La WG, Bhang SH, Kim HJ, Im GI, Lee H, et al. Hyaline cartilage regeneration by combined therapy of microfracture and long-term bone morphogenetic protein-2 delivery. Tissue Eng A. 2011;17(13–14):1809–18. https://doi.org/10.1089/ten.TEA.2010.0540Basic science study showing chondral defects in a rabbit model treated with MFx plus BMP-2 had higher histological scores and higher relative values of glycosaminoglycan and type II collagen versus MFx alone.

    Article  CAS  Google Scholar 

  51. Chubinskaya S, Merrihew C, Cs-Szabo G, Mollenhauer J, McCartney J, Rueger DC, et al. Human articular chondrocytes express osteogenic protein-1. J Histochem Cytochem. 2000;48(2):239–50. https://doi.org/10.1177/002215540004800209.

    Article  CAS  PubMed  Google Scholar 

  52. Klein-Nulend J, Louwerse RT, Heyligers IC, Wuisman PI, Semeins CM, Goei SW, et al. Osteogenic protein (OP-1, BMP-7) stimulates cartilage differentiation of human and goat perichondrium tissue in vitro. J Biomed Mater Res. 1998;40(4):614–20.

    Article  CAS  Google Scholar 

  53. Nishida Y, Knudson CB, Kuettner KE, Knudson W. Osteogenic protein-1 promotes the synthesis and retention of extracellular matrix within bovine articular cartilage and chondrocyte cultures. Osteoarthr Cartil. 2000;8(2):127–36. https://doi.org/10.1053/joca.1999.0281.

    Article  CAS  Google Scholar 

  54. Jelic M, Pecina M, Haspl M, Kos J, Taylor K, Maticic D, et al. Regeneration of articular cartilage chondral defects by osteogenic protein-1 (bone morphogenetic protein-7) in sheep. Growth Factors. 2001;19(2):101–13.

    Article  CAS  Google Scholar 

  55. • Kuo AC, Rodrigo JJ, Reddi AH, Curtiss S, Grotkopp E, Chiu M. Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair. Osteoarthr Cartil. 2006;14(11):1126–35. https://doi.org/10.1016/j.joca.2006.04.004This study suggests a synergistic reaction with BMP-7 and MFx, likely related to the ability of the BMP-7 to act directly on the pluripotent MSCs introduced into the chondral defect by penetration of the subchondral bone plate.

    Article  CAS  Google Scholar 

  56. McQuillan DJ, Handley CJ, Campbell MA, Bolis S, Milway VE, Herington AC. Stimulation of proteoglycan biosynthesis by serum and insulin-like growth factor-I in cultured bovine articular cartilage. Biochem J. 1986;240(2):423–30.

    Article  CAS  Google Scholar 

  57. van Osch GJ, van den Berg WB, Hunziker EB, Hauselmann HJ. Differential effects of IGF-1 and TGF beta-2 on the assembly of proteoglycans in pericellular and territorial matrix by cultured bovine articular chondrocytes. Osteoarthr Cartil. 1998;6(3):187–95.

    Article  Google Scholar 

  58. Sah RL, Chen AC, Grodzinsky AJ, Trippel SB. Differential effects of bFGF and IGF-I on matrix metabolism in calf and adult bovine cartilage explants. Arch Biochem Biophys. 1994;308(1):137–47. https://doi.org/10.1006/abbi.1994.1020.

    Article  CAS  PubMed  Google Scholar 

  59. Hui W, Rowan AD, Cawston T. Modulation of the expression of matrix metalloproteinase and tissue inhibitors of metalloproteinases by TGF-beta1 and IGF-1 in primary human articular and bovine nasal chondrocytes stimulated with TNF-alpha. Cytokine. 2001;16(1):31–5. https://doi.org/10.1006/cyto.2001.0950.

    Article  CAS  PubMed  Google Scholar 

  60. Davies LC, Blain EJ, Gilbert SJ, Caterson B, Duance VC. The potential of IGF-1 and TGFbeta1 for promoting “adult” articular cartilage repair: an in vitro study. Tissue Eng A. 2008;14(7):1251–61. https://doi.org/10.1089/tea.2007.0211.

    Article  CAS  Google Scholar 

  61. Madry H, Kaul G, Cucchiarini M, Stein U, Zurakowski D, Remberger K, et al. Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther. 2005;12(15):1171–9. https://doi.org/10.1038/sj.gt.3302515.

    Article  CAS  PubMed  Google Scholar 

  62. Fortier LA, Mohammed HO, Lust G, Nixon AJ. Insulin-like growth factor-I enhances cell-based repair of articular cartilage. J Bone Joint Surg (Br). 2002;84(2):276–88.

    Article  CAS  Google Scholar 

  63. Longobardi L, O'Rear L, Aakula S, Johnstone B, Shimer K, Chytil A, et al. Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J Bone Miner Res. 2006;21(4):626–36. https://doi.org/10.1359/jbmr.051213.

    Article  CAS  PubMed  Google Scholar 

  64. Yaeger PC, Masi TL, de Ortiz JL, Binette F, Tubo R, McPherson JM. Synergistic action of transforming growth factor-beta and insulin-like growth factor-I induces expression of type II collagen and aggrecan genes in adult human articular chondrocytes. Exp Cell Res. 1997;237(2):318–25. https://doi.org/10.1006/excr.1997.3781.

    Article  CAS  PubMed  Google Scholar 

  65. An C, Cheng Y, Yuan Q, Li J, et al. Ann Biomed Eng. 2010;38(4):1647–54. https://doi.org/10.1007/s10439-009-9892-xBasic science study showing IGF-1 and BMP-2 directed adipose derived stomral cells toward chondrogenesis as demonstrated by chondrocyte-like cells with type II collagen and a reduced production of MMP-3.

    Article  PubMed  Google Scholar 

  66. Roessler BJ, Hartman JW, Vallance DK, Latta JM, Janich SL, Davidson BL. Inhibition of interleukin-1-induced effects in synoviocytes transduced with the human IL-1 receptor antagonist cDNA using an adenoviral vector. Hum Gene Ther. 1995;6(3):307–16. https://doi.org/10.1089/hum.1995.6.3-307.

    Article  CAS  PubMed  Google Scholar 

  67. Hung GL, Galea-Lauri J, Mueller GM, Georgescu HI, Larkin LA, Suchanek MK, et al. Suppression of intra-articular responses to interleukin-1 by transfer of the interleukin-1 receptor antagonist gene to synovium. Gene Ther. 1994;1(1):64–9.

    CAS  PubMed  Google Scholar 

  68. Nixon AJ, Haupt JL, Frisbie DD, Morisset SS, McIlwraith CW, Robbins PD, et al. Gene-mediated restoration of cartilage matrix by combination insulin-like growth factor-I/interleukin-1 receptor antagonist therapy. Gene Ther. 2005;12(2):177–86. https://doi.org/10.1038/sj.gt.3302396.

    Article  CAS  PubMed  Google Scholar 

  69. Morisset S, Frisbie DD, Robbins PD, Nixon AJ, McIlwraith CW. IL-1ra/IGF-1 gene therapy modulates repair of microfractured chondral defects. Clin Orthop Relat Res. 2007;462:221–8. https://doi.org/10.1097/BLO.0b013e3180dca05f.

    Article  PubMed  Google Scholar 

  70. •• Kraus VB, Birmingham J, Stabler TV, Feng S, Taylor DC, Moorman CT 3rd, et al. Effects of intraarticular IL1-Ra for acute anterior cruciate ligament knee injury: a randomized controlled pilot trial (NCT00332254). Osteoarthr Cartil. 2012;20(4):271–8. https://doi.org/10.1016/j.joca.2011.12.009RCT demonstating that patients with acute ACL tear who had received a single intra-articular injection of anakinra had substantially greater improvement in KOOS scores over 14 days. There is also an active phase I study evaluating the safety of intra-articular Anakinra in subjects with moderate OA of the knee (ClinicalTrials.govIdentifier: NCT02790723).

    Article  CAS  Google Scholar 

  71. Davidson D, Blanc A, Filion D, Wang H, Plut P, Pfeffer G, et al. Fibroblast growth factor (FGF) 18 signals through FGF receptor 3 to promote chondrogenesis. J Biol Chem. 2005;280(21):20509–15. https://doi.org/10.1074/jbc.M410148200.

    Article  CAS  PubMed  Google Scholar 

  72. Gigout A, Guehring H, Froemel D, Meurer A, Ladel C, Reker D, et al. Sprifermin (rhFGF18) enables proliferation of chondrocytes producing a hyaline cartilage matrix. Osteoarthr Cartil. 2017;25(11):1858–67. https://doi.org/10.1016/j.joca.2017.08.004.

    Article  CAS  Google Scholar 

  73. Sennett ML, Meloni GR, Farran AJE, Guehring H, Mauck RL, Dodge GR. Sprifermin treatment enhances cartilage integration in an in vitro repair model. J Orthop Res. 2018;36:2648–56. https://doi.org/10.1002/jor.24048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Power J, Hernandez P, Guehring H, Getgood A, Henson F. Intra-articular injection of rhFGF-18 improves the healing in microfracture treated chondral defects in an ovine model. J Orthop Res. 2014;32(5):669–76. https://doi.org/10.1002/jor.22580.

    Article  CAS  PubMed  Google Scholar 

  75. Lohmander LS, Hellot S, Dreher D, Krantz EF, Kruger DS, Guermazi A, et al. Intraarticular sprifermin (recombinant human fibroblast growth factor 18) in knee osteoarthritis: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2014;66(7):1820–31. https://doi.org/10.1002/art.38614.

    Article  CAS  Google Scholar 

  76. •• Hochberg MC, Guermazi A, Guehring H, Aydemir A, Wax S, Fleuranceau-Morel P, et al. Effect of intra-articular sprifermin vs placebo on femorotibial joint cartilage thickness in patients with osteoarthritis: The FORWARD Randomized Clinical Trial. JAMA. 2019;322(14):1360–70. https://doi.org/10.1001/jama.2019.14735Multicenter, randomized, placebo-controlled trial published in JAMA showing the intra-articular administration of 100 μg of sprifermin resulted in a significant improvement in total femorotibial joint cartilage thickness after 2 years vs placebo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. •• Chahla J, Cinque ME, Piuzzi NS, Mannava S, Geeslin AG, Murray IR, et al. A call for standardization in platelet-rich plasma preparation protocols and composition reporting: a systematic review of the clinical orthopaedic literature. J Bone Joint Surg Am. 2017;99(20):1769–79. https://doi.org/10.2106/JBJS.16.01374The lack of standardization of PRP preparation for clinical use has contributed at least in part to the varying clinical efficacy in PRP use.

    Article  PubMed  Google Scholar 

  78. Dhillon RS, Schwarz EM, Maloney MD. Platelet-rich plasma therapy - future or trend? Arthritis Res Ther. 2012;14(4):219. https://doi.org/10.1186/ar3914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mizuta H, Kudo S, Nakamura E, Otsuka Y, Takagi K, Hiraki Y. Active proliferation of mesenchymal cells prior to the chondrogenic repair response in rabbit full-thickness defects of articular cartilage. Osteoarthr Cartil. 2004;12(7):586–96. https://doi.org/10.1016/j.joca.2004.04.008.

    Article  Google Scholar 

  80. Drengk A, Zapf A, Stürmer EK, Stürmer KM, Frosch KH. Influence of platelet-rich plasma on chondrogenic differentiation and proliferation of chondrocytes and mesenchymal stem cells. Cells Tissues Organs. 2009;189(5):317–26. https://doi.org/10.1159/000151290.

    Article  PubMed  Google Scholar 

  81. Mishra A, Tummala P, King A, Lee B, Kraus M, Tse V, et al. Buffered platelet-rich plasma enhances mesenchymal stem cell proliferation and chondrogenic differentiation. Tissue Eng C Methods. 2009;15(3):431–5. https://doi.org/10.1089/ten.tec.2008.0534.

    Article  CAS  Google Scholar 

  82. Lee GW, Son JH, Kim JD, Jung GH. Is platelet-rich plasma able to enhance the results of arthroscopic microfracture in early osteoarthritis and cartilage lesion over 40 years of age? Eur J Orthop Surg Traumatol. 2013;23(5):581–7. https://doi.org/10.1007/s00590-012-1038-4.

    Article  PubMed  Google Scholar 

  83. •• Fitzpatrick J, Bulsara MK, McCrory PR, Richardson MD, Zheng MH. Analysis of platelet-rich plasma extraction: variations in platelet and blood components between 4 common commercial kits. Orthop J Sports Med. 2017;5(1):2325967116675272. https://doi.org/10.1177/2325967116675272It is important to note that there is wide variation of blood components, including platelets, red blood cells, leukocytes, pH, and glucose in different methods of PRP extractions.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mazzocca AD, McCarthy MB, Chowaniec DM, Cote MP, Romeo AA, Bradley JP, et al. Platelet-rich plasma differs according to preparation method and human variability. J Bone Joint Surg Am. 2012;94(4):308–16. https://doi.org/10.2106/JBJS.K.00430.

    Article  PubMed  Google Scholar 

  85. Wilke MM, Nydam DV, Nixon AJ. Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model. J Orthop Res. 2007;25(7):913–25. https://doi.org/10.1002/jor.20382.

    Article  CAS  PubMed  Google Scholar 

  86. Chen FH, Tuan RS. Mesenchymal stem cells in arthritic diseases. Arthritis Res Ther. 2008;10(5):223. https://doi.org/10.1186/ar2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Fortier LA, Nixon AJ, Williams J, Cable CS. Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells. Am J Vet Res. 1998;59(9):1182–7.

    CAS  PubMed  Google Scholar 

  88. McCarrel T, Fortier L. Temporal growth factor release from platelet-rich plasma, trehalose lyophilized platelets, and bone marrow aspirate and their effect on tendon and ligament gene expression. J Orthop Res. 2009;27(8):1033–42. https://doi.org/10.1002/jor.20853.

    Article  CAS  PubMed  Google Scholar 

  89. Indrawattana N, Chen G, Tadokoro M, Shann LH, Ohgushi H, Tateishi T, et al. Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun. 2004;320(3):914–9. https://doi.org/10.1016/j.bbrc.2004.06.029.

    Article  CAS  PubMed  Google Scholar 

  90. Fortier LA, Potter HG, Rickey EJ, Schnabel LV, Foo LF, Chong LR, et al. Concentrated bone marrow aspirate improves full-thickness cartilage repair compared with microfracture in the equine model. J Bone Joint Surg Am. 2010;92(10):1927–37. https://doi.org/10.2106/JBJS.I.01284.

    Article  PubMed  Google Scholar 

  91. Hannon CP, Ross KA, Murawski CD, Deyer TW, Smyth NA, Hogan MV, et al. Arthroscopic bone marrow stimulation and concentrated bone marrow aspirate for osteochondral lesions of the talus: a case-control study of functional and magnetic resonance observation of cartilage repair tissue outcomes. Arthroscopy. 2016;32(2):339–47. https://doi.org/10.1016/j.arthro.2015.07.012.

    Article  PubMed  Google Scholar 

  92. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  Google Scholar 

  93. • Gobbi A, Whyte GP. One-stage cartilage repair using a hyaluronic acid-based scaffold with activated bone marrow-derived mesenchymal stem cells compared with microfracture: five-year follow-up. Am J Sports Med. 2016;44(11):2846–54. https://doi.org/10.1177/0363546516656179Level 2 cohort study at the endpoint of 5 years showed BMAC plus HA scaffold treated patients maintained a statistically significant improved Tegner, IKDC objective, KOOS–Pain, and KOOS–sports scores compared with MFx.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarav S. Shah.

Ethics declarations

Conflict of Interest

Sarav S. Shah declares that he has no conflict of interest.

Kai Mithoefer declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Investigation performed at New England Baptist Hospital, Boston, MA 02120, USA

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.S., Mithoefer, K. Current Applications of Growth Factors for Knee Cartilage Repair and Osteoarthritis Treatment. Curr Rev Musculoskelet Med 13, 641–650 (2020). https://doi.org/10.1007/s12178-020-09664-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-020-09664-6

Keywords

Navigation