Skip to main content
Log in

Technology in Arthroplasty: Are We Improving Value?

  • Quality and Cost Control in TJA (B Waddell, section editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Purpose of Review

Total joint arthroplasty is regarded as a highly successful procedure. Patient outcomes and implant longevity, however, are related to proper alignment and position of the prostehses. In an attempt to reduce outliers and improve accuracy and precision of component position, navigation and robotics have been introduced. These technologies, however, come at a price. The goals of this review are to evaluate these technologies in total joint arthroplasty and determine if they add value.

Recent Findings

Recent studies have demonstrated that navigation and robotics in total joint arthroplasty can decrease outliers while improving accuracy in component positioning. While some studies have demonstrated improved patient reported outcomes, not all studies have shown this to be true. Most studies cite increased cost of equipment and longer operating room times as the major downsides of the technologies at present. Long-term studies are just becoming available and are promising, as some studies have shown decreased revision rates when navigation is used. Finally, there are relatively few studies evaluating the direct cost and value of these technologies.

Summary

Navigation and robotics have been shown to improve component position in total joint arthroplasty, which can improve patient outcomes and implant longevity. These technologies offer a promising future for total joint arthroplasty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Robertsson O, Dunbar M, Pehrsson T, Knutson K, Lidgren L. Patient satisfaction after knee arthroplasty: a report on 27,372 knees operated on between 1981 and 1995 in Sweden. Acta Orthop Scand. 2000;71:262–7. doi:10.1080/000164700317411852.

    Article  CAS  PubMed  Google Scholar 

  2. Warth LC, Callaghan JJ, Liu SS, Klaassen AL, Goetz DD, Johnston RC. Thirty-five-year results after Charnley total hip arthroplasty in patients less than fifty years old. A concise follow-up of previous reports. J Bone Joint Surg Am. 2014;96:1814–9. doi:10.2106/JBJS.M.01573.

    Article  PubMed  Google Scholar 

  3. Knight SR, Aujla R, Biswas SP. Total hip arthroplasty - over 100 years of operative history. Orthop Rev. 2011;3:e16. doi:10.4081/or.2011.e16.

    Article  Google Scholar 

  4. • Berend ME, Ritter MA, Meding JB, Faris PM, Keating EM, Redelman R, et al. Tibial component failure mechanisms in total knee arthroplasty. Clin Orthop. 2004;428:26–34. This study details failure mechanisms among 3152 metal backed cemented tibial components in total knee arthroplasty.Overall tibial revision rate was 1.3% (41 tobial components). Primary mode of failure was medial bone collapse and main factors related to this were tibial component varus greater than 3 degrees, higher BMI and overall postoperative varun alignment of the limb.

    Article  Google Scholar 

  5. • Lewinnek GE, Lewis JL, Tarr R, Compere CL, Zimmerman JR. Dislocations after total hip-replacement arthroplasties. J Bone Joint Surg Am. 1978;60:217–20. This classic study defined the safe zones for acetabular cup position in total hip arthroplasty. Safe zones were defined as inclination of 40 +/- 10 degrees and anterversion of 15 +/-10 degrees. Outside these zones, the dislocation rate increased from 1.5% to 6.1%.

    Article  CAS  PubMed  Google Scholar 

  6. Wasielewski RC, Galante JO, Leighty RM, Natarajan RN, Rosenberg AG. Wear patterns on retrieved polyethylene tibial inserts and their relationship to technical considerations during total knee arthroplasty. Clin Orthop. 1994;299:31–43.

    Google Scholar 

  7. Jeffery RS, Morris RW, Denham RA. Coronal alignment after total knee replacement. J Bone Joint Surg Br. 1991;73:709–14.

    CAS  PubMed  Google Scholar 

  8. Barrack RL, Schrader T, Bertot AJ, Wolfe MW, Myers L. Component rotation and anterior knee pain after total knee arthroplasty. Clin Orthop. 2001;392:46–55.

    Article  Google Scholar 

  9. Brown MJ, Matthews JR, Bayers-Thering MT, Phillips MJ, Krackow KA. Low incidence of postoperative complications with navigated Total knee arthroplasty. J Arthroplast. 2017; doi:10.1016/j.arth.2017.01.045.

  10. Knee Navigation Application for Arthroplasty Knee3 from Brainlab. Brainlab n.d. https://www.brainlab.com/en/surgery-products/orthopedic-surgery-products/knee-navigation-application/. Accessed 1 April 2017.

  11. Computer-Assisted Surgery — Exactech, Inc. n.d. https://www.exac.com/products/knee/advanced-surgical-instrumentation. Accessed 1 April 2017.

  12. Nam D, Jerabek SA, Haughom B, Cross MB, Reinhardt KR, Mayman DJ. Radiographic analysis of a hand-held surgical navigation system for tibial resection in total knee arthroplasty. J Arthroplast. 2011;26:1527–33. doi:10.1016/j.arth.2011.01.012.

    Article  Google Scholar 

  13. • Cip J, Widemschek M, Luegmair M, Sheinkop MB, Benesch T, Martin A. Conventional versus computer-assisted technique for total knee arthroplasty: a minimum of 5-year follow-up of 200 patients in a prospective randomized comparative trial. J Arthroplast. 2014;29:1795–802. doi:10.1016/j.arth.2014.04.037. This study compared 100 consecutive navigated total knee replacements to 100 consecutive conventional total knee replacements. At 5 years postop, they found the navigated group to have a non-statistically lower rate of revision (1.1% vs 4.6%, p=0.368). The navigated group had a higher chance of being within 3 degrees of the mechanical axis and more accurate slope. Finally, Insall and HSS scores were higher in the navigated group.

    Article  Google Scholar 

  14. Blakeney WG, Khan RJK, Palmer JL. Functional outcomes following total knee arthroplasty: a randomised trial comparing computer-assisted surgery with conventional techniques. Knee. 2014;21:364–8. doi:10.1016/j.knee.2013.04.001.

    Article  PubMed  Google Scholar 

  15. Baumbach JA, Willburger R, Haaker R, Dittrich M, Kohler S. 10-year survival of navigated versus conventional TKAs: a retrospective study. Orthopedics. 2016;39:S72–6. doi:10.3928/01477447-20160509-21.

    Article  PubMed  Google Scholar 

  16. de Steiger RN, Liu Y-L, Graves SE. Computer navigation for total knee arthroplasty reduces revision rate for patients less than sixty-five years of age. J Bone Joint Surg Am. 2015;97:635–42. doi:10.2106/JBJS.M.01496.

    Article  PubMed  Google Scholar 

  17. Licini DJ, Meneghini RM. Modern abbreviated computer navigation of the femur reduces blood loss in total knee arthroplasty. J Arthroplast. 2015;30:1729–32. doi:10.1016/j.arth.2015.04.020.

    Article  Google Scholar 

  18. Moskal JT, Capps SG, Mann JW, Scanelli JA. Navigated versus conventional total knee arthroplasty. J Knee Surg. 2014;27:235–48. doi:10.1055/s-0033-1360659.

    Article  PubMed  Google Scholar 

  19. Burnett RSJ, Barrack RL. Computer-assisted total knee arthroplasty is currently of no proven clinical benefit: a systematic review. Clin Orthop. 2013;471:264–76. doi:10.1007/s11999-012-2528-8.

    Article  PubMed  Google Scholar 

  20. Song EK, Agrawal PR, Kim SK, Seo HY, Seon JK. A randomized controlled clinical and radiological trial about outcomes of navigation-assisted TKA compared to conventional TKA: long-term follow-up. Knee Surg Sports Traumatol Arthrosc Off J ESSKA. 2016;24:3381–6. doi:10.1007/s00167-016-3996-2.

    Article  CAS  Google Scholar 

  21. Song E-K, Seon J-K, Park S-J, Jung WB, Park H-W, Lee GW. Simultaneous bilateral total knee arthroplasty with robotic and conventional techniques: a prospective, randomized study. Knee Surg Sports Traumatol Arthrosc Off J ESSKA. 2011;19:1069–76. doi:10.1007/s00167-011-1400-9.

    Article  Google Scholar 

  22. Ponder CE, Plaskos C, Cheal EJ. Press-fit Total knee arthroplasty with a robotic-cutting guide: proof of concept and initial clinical experience. Bone Jt J. 2013;95–B:61.

    Google Scholar 

  23. Koenig JA, Suero EM, Plaskos C. Surgical accuracy and efficiency of computer-navigated Tka with a robotic cutting guide – report on the first 100 cases. Orthop Proc. 2012;94–B:103.

    Google Scholar 

  24. Hampp E, Scholl L, Prieto M, Chang T, Abbasi A, Stoker M, et al. Robotic-arm assisted total knee arthroplasty demonstrated greater accuracy to plan compared to manual technique. 2017.

  25. Hampp E, Stoker M, Scholl L, Otto J, Mont M. Robotic-arm assisted total knee arthroplasty demonstrated soft tissue protection. 2017.

  26. Riddle DL, Jiranek WA, McGlynn FJ. Yearly incidence of unicompartmental knee arthroplasty in the United States. J Arthroplast. 2008;23:408–12. doi:10.1016/j.arth.2007.04.012.

    Article  Google Scholar 

  27. Bell SW, Anthony I, Jones B, MacLean A, Rowe P, Blyth M. Improved accuracy of component positioning with robotic-assisted Unicompartmental knee arthroplasty: data from a prospective, randomized controlled study. J Bone Joint Surg Am. 2016;98:627–35. doi:10.2106/JBJS.15.00664.

    Article  PubMed  Google Scholar 

  28. Pearle AD, van der List JP, Lee L, Coon TM, Borus TA, Roche MW. Survivorship and patient satisfaction of robotic-assisted medial unicompartmental knee arthroplasty at a minimum two-year follow-up. Knee. 2017;24:419–28. doi:10.1016/j.knee.2016.12.001.

    Article  PubMed  Google Scholar 

  29. Lonner JH, Smith JR, Picard F, Hamlin B, Rowe PJ, Riches PE. High degree of accuracy of a novel image-free handheld robot for unicondylar knee arthroplasty in a cadaveric study. Clin Orthop. 2015;473:206–12. doi:10.1007/s11999-014-3764-x.

    Article  PubMed  Google Scholar 

  30. Nam D, Weeks KD, Reinhardt KR, Nawabi DH, Cross MB, Mayman DJ. Accelerometer-based, portable navigation vs imageless, large-console computer-assisted navigation in total knee arthroplasty: a comparison of radiographic results. J Arthroplast. 2013;28:255–61. doi:10.1016/j.arth.2012.04.023.

    Article  Google Scholar 

  31. Steppacher SD, Kowal JH, Murphy SB. Improving cup positioning using a mechanical navigation instrument. Clin Orthop. 2011;469:423–8. doi:10.1007/s11999-010-1553-8.

    Article  PubMed  Google Scholar 

  32. Dorr LD, Malik A, Wan Z, Long WT, Harris M. Precision and bias of imageless computer navigation and surgeon estimates for acetabular component position. Clin Orthop. 2007;465:92–9. doi:10.1097/BLO.0b013e3181560c51.

    PubMed  Google Scholar 

  33. Davis ET, Schubert M, Wegner M, Haimerl M. A new method of registration in navigated hip arthroplasty without the need to register the anterior pelvic plane. J Arthroplast. 2015;30:55–60. doi:10.1016/j.arth.2014.08.026.

    Article  Google Scholar 

  34. • Lass R, Kubista B, Olischar B, Frantal S, Windhager R, Giurea A. Total hip arthroplasty using imageless computer-assisted hip navigation: a prospective randomized study. J Arthroplast. 2014;29:786–91. doi:10.1016/j.arth.2013.08.020. In this randomized study, the authors found that computer navigation did not aid in improving the inclination, but did find the anteversion to be significantly more accurate. They also found outliers from the safe zone to be significantly less in the navigated group.

    Article  Google Scholar 

  35. Weber M, Woerner M, Springorum R, Sendtner E, Hapfelmeier A, Grifka J, et al. Fluoroscopy and imageless navigation enable an equivalent reconstruction of leg length and global and femoral offset in THA. Clin Orthop. 2014;472:3150–8. doi:10.1007/s11999-014-3740-5.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ellapparadja P, Mahajan V, Deakin AH, Deep K. Reproduction of hip offset and leg length in navigated Total hip arthroplasty: how accurate are we? J Arthroplast. 2015;30:1002–7. doi:10.1016/j.arth.2015.01.027.

    Article  Google Scholar 

  37. Renkawitz T, Weber M, Springorum H-R, Sendtner E, Woerner M, Ulm K, et al. Impingement-free range of movement, acetabular component cover and early clinical results comparing “femur-first” navigation and “conventional” minimally invasive total hip arthroplasty: a randomised controlled trial. Bone Jt J. 2015;97–B:890–8. doi:10.1302/0301-620X.97B7.34729.

    Article  Google Scholar 

  38. Keshmiri A, Schröter C, Weber M, Craiovan B, Grifka J, Renkawitz T. No difference in clinical outcome, bone density and polyethylene wear 5-7 years after standard navigated vs. conventional cementfree total hip arthroplasty. Arch Orthop Trauma Surg. 2015;135:723–30. doi:10.1007/s00402-015-2201-2.

    Article  PubMed  Google Scholar 

  39. Stiehl JB, Heck DA, Jaramaz B, Amiot L-P. Comparison of fluoroscopic and imageless registration in surgical navigation of the acetabular component. Comput Aided Surg Off J Int Soc Comput Aided Surg. 2007;12:116–24. doi:10.3109/10929080701292939.

    Article  Google Scholar 

  40. Kalteis T, Handel M, Bäthis H, Perlick L, Tingart M, Grifka J. Imageless navigation for insertion of the acetabular component in total hip arthroplasty: is it as accurate as CT-based navigation? J Bone Joint Surg Br. 2006;88:163–7. doi:10.1302/0301-620X.88B2.17163.

    Article  CAS  PubMed  Google Scholar 

  41. Digioia AM, Jaramaz B, Plakseychuk AY, Moody JE, Nikou C, Labarca RS, et al. Comparison of a mechanical acetabular alignment guide with computer placement of the socket. J Arthroplast. 2002;17:359–64.

    Article  Google Scholar 

  42. • Parratte S, Argenson J-NA. Validation and usefulness of a computer-assisted cup-positioning system in total hip arthroplasty. A prospective, randomized, controlled study. J Bone Joint Surg Am. 2007;89:494–9. doi:10.2106/JBJS.F.00529. In this study, computer navigation took longer, however, it gave a significant reduction in the outliers from the safe zone for inclination and version.

    PubMed  Google Scholar 

  43. Sugano N, Takao M, Sakai T, Nishii T, Miki H. Does CT-based navigation improve the long-term survival in ceramic-on-ceramic THA? Clin Orthop. 2012;470:3054–9. doi:10.1007/s11999-012-2378-4.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Beckmann J, Stengel D, Tingart M, Götz J, Grifka J, Lüring C. Navigated cup implantation in hip arthroplasty. Acta Orthop. 2009;80:538–44. doi:10.3109/17453670903350073.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Elson L, Dounchis J, Illgen R, Marchand RC, Padgett DE, Bragdon CR, et al. Precision of acetabular cup placement in robotic integrated total hip arthroplasty. Hip Int J Clin Exp Res Hip Pathol Ther. 2015;25:531–6. doi:10.5301/hipint.5000289.

    Google Scholar 

  46. Bargar WL. Robots in orthopaedic surgery: past, present, and future. Clin Orthop. 2007;463:31–6.

    PubMed  Google Scholar 

  47. Nakamura N, Sugano N, Nishii T, Kakimoto A, Miki H. A comparison between robotic-assisted and manual implantation of Cementless Total hip arthroplasty. Clin Orthop. 2010;468:1072–81. doi:10.1007/s11999-009-1158-2.

    Article  PubMed  Google Scholar 

  48. Bargar WL, Bauer A, Börner M. Primary and revision total hip replacement using the Robodoc system. Clin Orthop. 1998:82–91.

  49. Honl M, Dierk O, Gauck C, Carrero V, Lampe F, Dries S, et al. Comparison of robotic-assisted and manual implantation of a primary total hip replacement. A prospective study. J Bone Joint Surg Am. 2003;85–A:1470–8.

    Article  PubMed  Google Scholar 

  50. Spencer EH. The ROBODOC clinical trial: a robotic assistant for total hip arthroplasty. Orthop Nurs. 1996;15:9–14.

    Article  CAS  PubMed  Google Scholar 

  51. Nishihara S, Sugano N, Nishii T, Miki H, Nakamura N, Yoshikawa H. Comparison between hand rasping and robotic milling for stem implantation in cementless total hip arthroplasty. J Arthroplast. 2006;21:957–66. doi:10.1016/j.arth.2006.01.001.

    Article  Google Scholar 

  52. Hananouchi T, Sugano N, Nishii T, Nakamura N, Miki H, Kakimoto A, et al. Effect of robotic milling on periprosthetic bone remodeling. J Orthop Res Off Publ Orthop Res Soc. 2007;25:1062–9. doi:10.1002/jor.20376.

    Article  Google Scholar 

  53. Gallo J, Havranek V, Zapletalova J. Risk factors for accelerated polyethylene wear and osteolysis in ABG I total hip arthroplasty. Int Orthop. 2010;34:19–26. doi:10.1007/s00264-009-0731-3.

    Article  PubMed  Google Scholar 

  54. Leslie IJ, Williams S, Isaac G, Ingham E, Fisher J. High cup angle and microseparation increase the wear of hip surface replacements. Clin Orthop. 2009;467:2259–65. doi:10.1007/s11999-009-0830-x.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Callanan MC, Jarrett B, Bragdon CR, Zurakowski D, Rubash HE, Freiberg AA, et al. The John Charnley award: risk factors for cup malpositioning: quality improvement through a joint registry at a tertiary hospital. Clin Orthop. 2011;469:319–29. doi:10.1007/s11999-010-1487-1.

    Article  PubMed  Google Scholar 

  56. Bosker BH, Verheyen CCPM, Horstmann WG, Tulp NJA. Poor accuracy of freehand cup positioning during total hip arthroplasty. Arch Orthop Trauma Surg. 2007;127:375–9. doi:10.1007/s00402-007-0294-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Leichtle U, Gosselke N, Wirth CJ, Rudert M. Radiologic evaluation of cup placement variation in conventional total hip arthroplasty. ROFO Fortschr Geb Rontgenstr Nuklearmed. 2007;179:46–52. doi:10.1055/s-2006-927085.

    Article  CAS  PubMed  Google Scholar 

  58. Nawabi DH, Conditt MA, Ranawat AS, Dunbar NJ, Jones J, Banks S, et al. Haptically guided robotic technology in total hip arthroplasty: a cadaveric investigation. Proc Inst Mech Eng [H]. 2013;227:302–9. doi:10.1177/0954411912468540.

    Article  Google Scholar 

  59. Domb BG, El Bitar YF, Sadik AY, Stake CE, Botser IB. Comparison of robotic-assisted and conventional acetabular cup placement in THA: a matched-pair controlled study. Clin Orthop. 2014;472:329–36. doi:10.1007/s11999-013-3253-7.

    Article  PubMed  Google Scholar 

  60. Domb BG, Redmond JM, Louis SS, Alden KJ, Daley RJ, LaReau JM, et al. Accuracy of component positioning in 1980 Total hip arthroplasties: a comparative analysis by surgical technique and mode of guidance. J Arthroplast. 2015;30:2208–18. doi:10.1016/j.arth.2015.06.059.

    Article  Google Scholar 

  61. Schulz AP, Seide K, Queitsch C, von Haugwitz A, Meiners J, Kienast B, et al. Results of total hip replacement using the Robodoc surgical assistant system: clinical outcome and evaluation of complications for 97 procedures. Int J Med Robot Comput Assist Surg MRCAS. 2007;3:301–6. doi:10.1002/rcs.161.

    Article  Google Scholar 

  62. Chun YS, Kim KI, Cho YJ, Kim YH, Yoo MC, Rhyu KH. Causes and patterns of aborting a robot-assisted arthroplasty. J Arthroplast. 2011;26:621–5. doi:10.1016/j.arth.2010.05.017.

    Article  Google Scholar 

  63. Moschetti WE, Konopka JF, Rubash HE, Genuario JW. Can robot-assisted Unicompartmental knee arthroplasty be cost-effective? A Markov decision analysis. J Arthroplast. 2016;31:759–65. doi:10.1016/j.arth.2015.10.018.

    Article  Google Scholar 

  64. Novak EJ, Silverstein MD, Bozic KJ. The cost-effectiveness of computer-assisted navigation in total knee arthroplasty. J Bone Joint Surg Am. 2007;89:2389–97. doi:10.2106/JBJS.F.01109.

    PubMed  Google Scholar 

  65. Slover JD, Tosteson ANA, Bozic KJ, Rubash HE, Malchau H. Impact of hospital volume on the economic value of computer navigation for total knee replacement. J Bone Joint Surg Am. 2008;90:1492–500. doi:10.2106/JBJS.G.00888.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Beal MD, Delagramaticas D, Fitz D. Improving outcomes in total knee arthroplasty-do navigation or customized implants have a role? J Orthop Surg. 2016;11:60. doi:10.1186/s13018-016-0396-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bradford S. Waddell.

Ethics declarations

Conflict of Interest

Seth Jerabek reports consultancy fees from Stryker, outside of the submitted work. The other authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Quality and Cost Control in TJA

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waddell, B.S., Carroll, K. & Jerabek, S. Technology in Arthroplasty: Are We Improving Value?. Curr Rev Musculoskelet Med 10, 378–387 (2017). https://doi.org/10.1007/s12178-017-9415-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-017-9415-6

Keywords

Navigation