Skip to main content

Advertisement

Log in

Reducing Heart Failure Risks in Obese Patients

  • Heart Failure Prevention (W Tang, Section Editor)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Heart failure (HF) and obesity have both become major epidemics and recognized as public health problems. Obesity has known adverse effects on cardiac structure and function; therefore, it is not surprising that there is an increased prevalence and incidence of HF in obese patients. Additionally, numerous cardiovascular (CV) risk factors associated with obesity, such as hypertension, coronary heart disease, dyslipidemia, atrial fibrillation, and depression, are also known to play a role in the development of HF. Numerous studies have suggested the presence of an “obesity paradox,” where obese patients with HF have a better prognosis than do lean or normal-weight HF patients. This review discusses the role of these risk factors in obese HF patients and the utility of purposeful weight loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Braunwald E. Shattuck lecture—cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. N Engl J Med. 1997;337:1360–9.

    Article  CAS  PubMed  Google Scholar 

  2. Roger V. Epidemiology of heart failure. Circ Res. 2013;113:646–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lavie CJ, Alpert MA, Arena R, Mehra MR, Milani RV, Ventura HO. Impact of obesity and the obesity paradox on prevalence and prognosis in heart failure. J Am Coll Cardiol HF. 2013;1:93–102. This paper discusses the data regarding the adverse effects of obesity on cardiac function as well as the implications of the obesity paradox in HF.

    Google Scholar 

  4. World Health Organization Technical Report 894. Obesity: preventing and managing the global epidemic. Geneva: World Health Organization; 2000.

  5. Lavie CJ, Milani RV, Ventura HO. Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J Am Coll Cardiol. 2009;53:1925–32. This paper discusses the risk factors associated with obesity and the obesity paradox.

    Article  PubMed  Google Scholar 

  6. Aune D, Sen A, Norat T, Janszky I, Romundstad P, Tonstad S, et al. Body mass index, abdominal fatness and heart failure incidence and mortality: a systematic review and dose-response meta-analysis of prospective studies. Circulation. 2016; CIRCULATIONAHA.115.016801.

  7. Lavie CJ, Deschutter A, Alpert MA, Mehra MR, Milani RV, Ventura HO. Obesity paradox, cachexia, frailty, and heart failure. Heart Fail Clin. 2014;10:319–26.

    Article  PubMed  Google Scholar 

  8. McNallan SM, Singh M, Chamberlain AM, Kane RL, Dunlay SM, Redfield MM, et al. Frailty and healthcare utilization among patients with heart failure in the community. J Am Coll Cardiol. 2013;1(2):135–41.

    Google Scholar 

  9. Mehra MR. Fat, cachexia and the right ventricle in heart failure. J Am Coll Cardiol. 2013;62(18):1671–3.

    Article  PubMed  Google Scholar 

  10. Lavie CJ, McAuley PA, Church TS, Milani RV, Blair SN. Obesity and cardiovascular disease: implications regarding fitness, fatness, and severity in the obesity paradox. J Am Coll Cardiol. 2014;63:1345–54. This paper reviews CVD risk factors in obesity and the role of purposeful weight loss.

    Article  PubMed  Google Scholar 

  11. Patel DA, Lavie CJ, Milani RV, Gilliland YG, Shah S, Ventura HO. Association of left ventricular geometry with left atrial enlargement in patients with preserved ejection fraction. Congest Heart Fail. 2012;18:4–8.

    Article  PubMed  Google Scholar 

  12. Alpert MA, Alexander JK. Cardiac morphology and obesity in man. In: Alpert MA, Alexander JK, editors. The heart and lung in obesity. Armonk: Futura Publishing Company; 1998. p. 25–49.

    Google Scholar 

  13. Alpert MA, Terry BE, Kelly DK, et al. Effect of weight loss on cardiac chamber size, wall thickness and left ventricular function in morbid obesity. Am J Cardiol. 1995;55:783–6.

    Article  Google Scholar 

  14. Lauer MS, Anderson KM, Kannel WB, Levy D. The impact of obesity on left ventricular mass and geometry. The Framingham Study. JAMA. 1991;266:231–6.

    Article  CAS  PubMed  Google Scholar 

  15. Nakajima T, Fuhoka S, Tokunaga K, Hirobe K, Matsuzawa Y, Tarui S. Non-invasive study of left ventricular performance in obese patients: influences of duration of obesity. Circulation. 1985;71:481–6.

    Article  CAS  PubMed  Google Scholar 

  16. Alpert MA, Lambert CR, Panayiotou H, Terry BE, Cohen MV, Massey CV, et al. Relation of duration of morbid obesity to left ventricular mass, systolic function and diastolic filling, and effect of weight loss. Am J Cardiol. 1995;76:1194–7.

    Article  CAS  PubMed  Google Scholar 

  17. Bella JN, Devereux RB, Roman MJ, et al. Relations of left ventricular mass to fat-free and adipose body mass: the Strong Heart Study. Circulation. 1998;98:2538–44.

    Article  CAS  PubMed  Google Scholar 

  18. Alpert MA. Obesity cardiomyopathy; pathophysiology and evolution of the clinical syndrome. Am J Med Sci. 2001;321:225–36.

    Article  CAS  PubMed  Google Scholar 

  19. Alexander JK, Alpert MA. Hemodynamic alterations with obesity in man. In: Alpert MA, Alexander JK, editors. The heart and lung in obesity. Armonk: Futura Publishing Company; 1998. p. 45–56.

    Google Scholar 

  20. Kasper EK, Hruban RH, Baughman KL. Cardiomyopathy of obesity. A clinicopathologic evaluation of 43 obese patients with heart failure. Am J Cardiol. 1992;70:921–4.

    Article  CAS  PubMed  Google Scholar 

  21. Pascual M, Pascual A, Soria F, et al. Effects of isolated obesity on systolic and diastolic left ventricular function. Heart. 2003;89:1152–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chakko S, Alpert MA, Alexander JK. Obesity and ventricular function in man: diastolic function. In: Alpert MA, Alexander JK, editors. The heart and lung in obesity. Armonk: Futura Publishing Company; 1998. p. 57–76.

    Google Scholar 

  23. Alpert MA, Lambert CR, Terry BE, et al. Effect of weight loss on left ventricular diastolic filling in obesity. Am J Cardiol. 1995;76:1198–201.

    Article  CAS  PubMed  Google Scholar 

  24. Russo C, Jin Z, Homma S, et al. Effect of obesity and overweight on left ventricular diastolic function: a community-based study in an elderly cohort. J Am Coll Cardiol. 2011;57:1368–74.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wong CY, O’Moore-Sullivan T, Leano R, Bynnee N, Beller E, Marwick TH. Alterations of left ventricular myocardial characteristics associated with obesity. Circulation. 2004;110:3081–7.

    Article  PubMed  Google Scholar 

  26. Alpert MA, Lavie CJ, Agrawal H, Aggarwal KB, Kumar SA. Obesity and heart failure: epidemiology, pathophysiology, clinical manifestations, and management. Transl Res. 2014;164(4):345–56. This paper discusses the comorbidities associated with obesity and the hemodynamic alterations which may occur.

    Article  CAS  PubMed  Google Scholar 

  27. Alpert MA, Omran J, Mehra A, Ardhanari S. Impact of obesity and weight loss on cardiac performance and morphology in adults. Prog Cardiovasc Dis. 2014;56:391–400.

    Article  PubMed  Google Scholar 

  28. Thakur V, Richards R, Reisin E. Obesity, hypertension and the heart. Am J Med Sci. 2001;321:242–8.

    Article  CAS  PubMed  Google Scholar 

  29. Aurigemma GP, de Simone G, Fitzgibbons TP. Cardiac remodeling in obesity. Circ Cardiovasc Imaging. 2013;6:442–52.

    Article  Google Scholar 

  30. Woodwiss AJ, Libhaber CD, Majane OH, Libhaber E, Maseko M, Norton GR. Obesity promotes left ventricular concentric rather than eccentric geometric remodeling and hypertrophy independent of blood pressure. Am J Hypertens. 2008;21:1149–53.

    Google Scholar 

  31. Lauer MS, Anderson KM, Kannel WB, Levy D. The impact of obesity on left ventricular mass and geometry. JAMA. 1991;266:231–6.

    Article  CAS  PubMed  Google Scholar 

  32. Lavie CJ, Milani RV, Patel D, Artham SM, Ventura HO. Disparate effects of hypertension and obesity on left ventricular geometry and mortality in 8088 elderly patients with preserved systolic function. Postgrad Med. 2009;121:119–25.

    Article  PubMed  Google Scholar 

  33. Smalcelj A, Puljević D, Buljević B, Brida V. Left ventricular hypertrophy in obese hypertensives: is it really eccentric? An Echocardiographic Study. Coll Antropol. 2000;24:167–83.

    CAS  PubMed  Google Scholar 

  34. Peterson LR, Waggoner AD, Schectman KB, Meyer T, Gropler RJ, Barzilai B, et al. Alterations in left ventricular structure and function in young healthy obese women. J Am Coll Cardiol. 2004;43:1388–404.

    Article  Google Scholar 

  35. Turkbey EB, McClelland RL, Kronmal RA, Burke GL, Bild DE, Tracy RP, et al. The impact of obesity on the left ventricle: the Multi-Ethnic Study of Atherosclerosis (MESA). JACC Cardiovasc Imaging. 2010;3:266–74.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Iacobellis G, Ribaudo MC, Zappaterreno A, Iannucci CV, Mario U, Leonetti F. Adapted changes in left ventricular structure and function in severe uncomplicated obesity. Obes Res. 2004;12:1616–21.

    Article  PubMed  Google Scholar 

  37. Okpura IC, Adediran OS, Odia OJ. Left ventricular geometric patterns in obese Nigerian adults: an Echocardiographic Study. Internet J Intern Med. 2010;9:1–7.

    Google Scholar 

  38. Neeland IJ, Gupta S, Ayers CR, Turer AT, Rame JE, Das SR, et al. Relation of regional fat distribution to left ventricular structure and function. Circ Cardiovasc Imaging. 2013;6:800–7.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Messerli FH, Sundgaard-Riise K, Reisin E, Dreslinski G, Dunn FG, Frohlich E. Disparate cardiovascular effects of obesity and arterial hypertension. Ann Intern Med. 1983;74:808–12.

    CAS  Google Scholar 

  40. Messerli FH, Sundgaard-Riise ED, Reisin E, Dreslinski GR, Ventura HO, Oigman W, et al. Dimorphic cardiac adaptation to obesity and arterial hypertension. Ann Intern Med. 1983;99:757–61.

    Article  CAS  PubMed  Google Scholar 

  41. Chakko S, Alpert MA, Alexander JK. Obesity and ventricular function in man: diastolic function. In: Alpert MA, Alexander JK, editors. The heart and lung in obesity. Armonk: Futura Publishing Company; 1998. p. 77–94.

    Google Scholar 

  42. Hall ME, do Carmo JM, Da Silva AA, Juncos LA, Wang Z, Hall JE. Obesity, hypertension, and chronic kidney disease. Int J Nephrol Renov Dis. 2014;7:75–88.

    Article  Google Scholar 

  43. Hall JE, Crook ED, Jones DW, Wofford MR, Dubbert PM. Mechanisms of obesity-associated cardiovascular and renal disease. Am J Med Sci. 2002;324(3):127–37.

    Article  PubMed  Google Scholar 

  44. Hall JE, da Silva AA, do Carmo JM, et al. Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J Biol Chem. 2010;285(23):17271–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu J, Sui X, Lavie CJ, Zhou H, Park YM, Cai B, et al. Effects of cardiorespiratory fitness on blood pressure trajectory with aging in a cohort of healthy men. J Am Coll Cardiol. 2014;64:1245–53.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kannel WB. Incidence and epidemiology of heart failure. Heart Fail Rev. 2000;5:167–73.

    Article  CAS  PubMed  Google Scholar 

  47. Park YM, Sui X, Liu J, Zhou H, Kokkinos PF, Lavie CJ, et al. The effect of cardiorespiratory fitness on age-related lipids and lipoproteins. J Am Coll Cardiol. 2015;65(19):2091–100. This paper demonstrates the age-related changes seen in blood plasma levels in association with increased fitness levels.

    Article  CAS  PubMed  Google Scholar 

  48. Cullen P. Evidence that triglycerides are an independent coronary heart disease risk factor. Am J Cardiol. 2000;86:943–9.

    Article  CAS  PubMed  Google Scholar 

  49. Grundy SM, Cleeman JI, Merz CN, et al. Implications of recent clinical trials for the National Cholesterol Education Program Adult Treatment Panel III guidelines. J Am Coll Cardiol. 2004;44:720–32.

    Article  PubMed  Google Scholar 

  50. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA. 2001;285:2486–97.

    Article  Google Scholar 

  51. Eckel RH, Jakicic JM, Ard JD, de Jesus JM, Houston Miller N, Hubbard VS, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:2960–84.

    Article  PubMed  Google Scholar 

  52. Anderson KM, Castelli WP, Levy D. Cholesterol and mortality: 30 years of follow-up from the Framingham study. JAMA. 1987;257:2176–80.

    Article  CAS  PubMed  Google Scholar 

  53. Cui Y, Blumenthal RS, Flaws JA, et al. Non-high-density lipoprotein cholesterol level as a predictor of cardiovascular disease mortality. Arch Intern Med. 2001;161:1413–9.

    Article  CAS  PubMed  Google Scholar 

  54. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults. J Am Coll Cardiol. 2014:S1-S45.

  55. Stevenson WG, Tedrow UB, Seiler J. Atrial fibrillation in heart failure. N Engl J Med. 1999;341:910–1.

    Article  CAS  PubMed  Google Scholar 

  56. Wang TJ, Larson MG, Levy D, Vasan RS, Leip EP, Wolf PA, et al. Temporal relations of atrial fibrillation and congestive heart failure and their joint influence on mortality: the Framingham Heart Study. Circulation. 2003;107:2920–5.

    Article  PubMed  Google Scholar 

  57. Benjamin EJ, Levy D, Vaziri SM, D’Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA. 1994;271:840–4.

    Article  CAS  PubMed  Google Scholar 

  58. Rabah A, Wazni O. Atrial fibrillation in heart failure: catheter and surgical interventional therapies. Heart Fail Rev. 2014;19:325–30. This paper reviews current treatment modalities for atrial fibrillation in heart failure patients.

    Article  CAS  PubMed  Google Scholar 

  59. Shinbane JS, Wood MA, Jensen DN, Ellenbogen KA, Fitzpatrick AP, Scheinman MM. Tachycardia-induced cardiomyopathy: a review of animal models and clinical studies. J Am Coll Cardiol. 1997;29(4):709–15.

    Article  CAS  PubMed  Google Scholar 

  60. Clark DM, Plumb VJ, Epstein AE, Kay GN. Hemodynamic effects of an irregular sequence of ventricular cycle lengths during atrial fibrillation. J Am Coll Cardiol. 1997;30:1039–45.

    Article  CAS  PubMed  Google Scholar 

  61. Wyse DG, Waldo AL, DiMarco JP, Domanski MJ, Rosenberg Y, Schron EG, et al. A comparison of rate control and rhythm control in patients with atrial fibrillation. N Engl J Med. 2002;347(23):1825–33.

    Article  CAS  PubMed  Google Scholar 

  62. Van Gelder IC, Hagens VE, Bosker HA, Kingma JH, Kamp O, Kingma T, et al. A comparison of rate control and rhythm control in patients with recurrent persistent atrial fibrillation. N Engl J Med. 2002;347(23):1834–40.

    Article  PubMed  Google Scholar 

  63. Corley SD, Epstein AE, DiMarco JP, Domanski MJ, Geller N, Greene HL, et al. Relationships between sinus rhythm, treatment, and survival in the Atrial Fibrillation Follow-UP Investigation of Rhythm Management (AFFIRM) Study. Circulation. 2004;109:1509–13.

    Article  PubMed  Google Scholar 

  64. Roy D, Talajic M, Nattel S, Wyse DG, Dorian P, Lee KL, et al. Rhythm control versus rate control for atrial fibrillation and heart failure. N Engl J Med. 2008;358:2667–77.

    Article  CAS  PubMed  Google Scholar 

  65. Deedwania PC, Singh BN, Ellenbogen K, Fisher S, Fletcher R, Singh SN. Spontaneous conversion and maintenance of sinus rhythm by amiodarone in patients with heart failure and atrial fibrillation: observations from the veterans affairs congestive heart failure survival trial of antiarrhythmic therapy (CHF-STAT). The Depart of Veteran Affairs CHF-STAT Investigators. Circulation. 1998;2574-9.

  66. Wanahita N, Messerli FH, Bangalore S, Gami AS, Somers VK, Steinberg JS. Atial fibrillation and obesity—results of a meta-analysis. Am Heart J. 2008;155:310–5.

    Article  PubMed  Google Scholar 

  67. Luppino FS, de Wit LM, Bouvy PF, Stinjen T, Cuijpers P, Penninx B, et al. Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Arch Gen Psychiatry. 2010;67:220–9. This paper is a large meta-analysis demonstrating the link between obesity and depression.

    Article  PubMed  Google Scholar 

  68. Parto P, Lavie CJ, Arena R, Ventura HO. Preventing heart failure with exercise training. Curr Cardiovasc Risk Rep. 2015;9:1–7.

    Article  Google Scholar 

  69. Newhouse A, Jiang W. Co-morbidities in heart failure: heart failure and depression. Heart Fail Clin. 2014;10(2):295–304.

    Article  PubMed  Google Scholar 

  70. Rutledge T, Reis VA, Linke SE, Greenberg BH, Mills PJ. Depression in heart failure a meta-analytic review of prevalence intervention effects, and associations with clinical outcomes. J Am Coll Cardiol. 2006;48(8):1527–37.

    Article  PubMed  Google Scholar 

  71. Penninx BW, Beekman AT, Honig A, Deeg DJ, Schoevers RA, van Eijk JT, et al. Depression and cardiac mortality: results from a community-based longitudinal study. Arch Gen Psychiatry. 2001;58:221–7.

    Article  CAS  PubMed  Google Scholar 

  72. Blumenthal JA, Babyak MA, O’Connor C, Keteyian S, Landzberg J, Howlett J, et al. Effects of exercise training on depressive symptoms in patients with chronic heart failure: the HF-ACTION randomized trial. JAMA. 2012;308(5):465–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lavie CJ, Milani RV. Adverse psychological and coronary risk profiles in young patients with coronary artery disease and benefits of formal cardiac rehabilitation. Arch Intern Med. 2006;166:1878–83.

    Article  PubMed  Google Scholar 

  74. Lavie CJ, Milani RV, O’Keefe J, Lavie TJ. Impact of exercise training on psychological risk factors. Prog Cardiovasc Dis. 2011;53:464–70.

    Article  PubMed  Google Scholar 

  75. Milani RV, Lavie CJ. Impact of cardiac rehabilitation on depression and its associated mortality. Am J Med. 2007;120:799–806.

    Article  PubMed  Google Scholar 

  76. Milani RV, Lavie CJ. Reducing psychosocial stress: a novel mechanism of improving survival from exercise training. Am J Med. 2009;122:931–8.

    Article  PubMed  Google Scholar 

  77. Milani RV, Lavie CJ, Mehra MR, Ventura HO. Impact of exercise training and depression on survival in failure due to coronary heart disease. Am J Cardiol. 2011;107:64–8.

    Article  PubMed  Google Scholar 

  78. Lavie CJ, Osman AF, Milani RV, Mehra MR. Body composition and prognosis in chronic systolic heart failure: the obesity paradox. Am J Cardiol. 2003;91:891–4.

    Article  PubMed  Google Scholar 

  79. Clark AL, Chyu J, Horwich TB. The obesity paradox in men versus women with systolic heart failure. Am J Cardiol. 2012;110:77–82.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Oreopoulos A, Padwal R, Kalantar-Zadeh K, Fonarow GC, Norris CM, McAlister FA. Body mass index and mortality in heart failure: a meta-analysis. Am Heart J. 2008;156:13–22.

    Article  PubMed  Google Scholar 

  81. Kenchaiah S, Pocock SJ, Wang D, Finn PV, Zornoff LA, Skali H, et al. Body mass index and prognosis in patients with chronic heart failure insights from the Candesartan in heart failure: assessment of reduction in mortality and morbidity (CHARM) program. Circulation. 2007;116:627–36.

    Article  PubMed  Google Scholar 

  82. Allison DB, Zannolli R, Faith MS, Heo M, Pietrobelli A, Vanltallie TB, et al. Weight loss increases and fat loss decreases all-cause mortality rate: results from two independent cohort studies. Int J Obes Relat Metab Disord. 1999;23:603–11.

    Article  CAS  PubMed  Google Scholar 

  83. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.

    Article  PubMed Central  Google Scholar 

  84. Tuomilehto J, Lindström J, Eriksson JG, Valle TT, Hämäläinen H, Ilanne-Parikka P, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343–50.

    Article  CAS  PubMed  Google Scholar 

  85. Milani RV, Lavie CJ. Prevalence and profile of metabolic syndrome in patients following acute coronary events and effects of therapeutic lifestyle change with cardiac rehabilitation. Am J Cardiol. 2003;92:50–4.

    Article  PubMed  Google Scholar 

  86. Eilat-Adar S, Eldar M, Goldbourt U. Association of intentional changes in body weight with coronary heart disease event rates in overweight subjects who have an additional coronary risk factor. Am J Epidemiol. 2005;161:352–8.

    Article  PubMed  Google Scholar 

  87. MacMahon S, Collins G, Rautaharju P, Cutler J, Neaton J, Prineas R, et al. Electrocardiographic left ventricular hypertrophy and effects of antihypertensive drug therapy in hypertensive participants in the Multiple Risk Factor Intervention Trial. Am J Cardiol. 1989;63:202–10.

    Article  CAS  PubMed  Google Scholar 

  88. Mehra MR, Uber PA, Park MH, Scott RL, Ventura HO, Harris BC, et al. Obesity and suppressed B-type natriuretic peptide levels in heart failure. J Am Coll Cardiol. 2004;43:1590–5.

    Article  CAS  PubMed  Google Scholar 

  89. Ndumele CE, Matsushita K, Sang Y, Lazo M, Agarwal SK, Nambi V, et al. NT-proBNP and heart failure risk among individuals with and without obesity: The ARIC study. Circulation. 2016;CIRCULATIONAHA.115.017298.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl J. Lavie.

Ethics declarations

Conflict of Interest

Drs. Parto, Lavie, and Ventura state that they have nothing to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Additional information

This article is part of the Topical Collection on Heart Failure Prevention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parto, P., Lavie, C.J. & Ventura, H.O. Reducing Heart Failure Risks in Obese Patients. Curr Cardiovasc Risk Rep 10, 15 (2016). https://doi.org/10.1007/s12170-016-0498-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12170-016-0498-1

Keywords

Navigation