Skip to main content
Log in

The Early Life Origins of Cardiovascular Disease

  • Genetics, Environment, Behavior and Risk Reduction (S Padmanabhan, Section Editor)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Cardiovascular disease continues to impose a high societal and economic burden. Although it occurs primarily in later life, there is strong evidence that it originates in early life. The nutritional environment that an unborn child is exposed to can heavily influence later disease risk, with nutritional exposures altering organ development and programming metabolic changes that are then maintained during the life course. Epigenetic changes induced by the early life environment are thought to be a key mechanism by which these early life events influence subsequent disease risk. Here, we review the emerging role of epigenetics in the development of cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Singhal A. The global epidemic of noncommunicable disease: the role of early-life factors. Nestle Nutr Inst Workshop Ser. 2014;78:123–32.

    Article  PubMed  Google Scholar 

  2. WHO. Noncommunicable diseases country profiles. 2014.

  3. WHO. Global status report on noncommunicable diseases. 2010.

  4. Ramachandran A, Snehalatha C. Rising burden of obesity in Asia. J Obes. 2010; 2010.

  5. Hanson MA. Developmental origins of obesity and non-communicable disease. Endocrinol Nutr Org Soc Esp Endocrinol Nutr. 2013;60 Suppl 1:10–1.

    Google Scholar 

  6. Kelishadi R, Poursafa P. A review on the genetic, environmental, and lifestyle aspects of the early-life origins of cardiovascular disease. Curr Probl Pediatr Adolesc Health Care. 2014;44(3):54–72.

    Article  PubMed  Google Scholar 

  7. Fall CH. Fetal programming and the risk of noncommunicable disease. Indian J Pediatr. 2013;80 Suppl 1:S13–20.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Blackmore HL, Ozanne SE. Maternal diet-induced obesity and offspring cardiovascular health. J Dev Origins Health Dis. 2013;4(5):338–47.

    Article  CAS  Google Scholar 

  9. Cote AT, Harris KC, Panagiotopoulos C, Sandor GG, Devlin AM. Childhood obesity and cardiovascular dysfunction. J Am Coll Cardiol. 2013;62(15):1309–19.

    Article  PubMed  Google Scholar 

  10. Kannel WB, Garrison RJ, Dannenberg AL. Secular blood pressure trends in normotensive persons: the Framingham Study. Am Heart J. 1993;125(4):1154–8.

    Article  CAS  PubMed  Google Scholar 

  11. Flegal KM, Carroll MD, Kit BK, Ogden CL. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010. JAMA. 2012;307(5):491–7.

    Article  PubMed  Google Scholar 

  12. Heslehurst N, Rankin J, Wilkinson JR, Summerbell CD. A nationally representative study of maternal obesity in England, UK: trends in incidence and demographic inequalities in 619 323 births, 1989–2007. Int J Obes. 2010;34(3):420–8.

    Article  CAS  Google Scholar 

  13. Dhuper S, Abdullah RA, Weichbrod L, Mahdi E, Cohen HW. Association of obesity and hypertension with left ventricular geometry and function in children and adolescents. Obesity. 2011;19(1):128–33.

    Article  PubMed  Google Scholar 

  14. Black D, Bryant J, Peebles C, Davies L, Inskip H, Godfrey K, et al. Increased regional deformation of the left ventricle in normal children with increased body mass index: implications for future cardiovascular health. Pediatr Cardiol. 2014;35(2):315–22. This study examined the link between BMI and CVD risk factors in children, finding that a higher BMI associated with an increases in: systolic blood pressure, heart rate, cardiac output, and left ventricular diastolic mass/strain rate.

    Article  PubMed  Google Scholar 

  15. Mahfouz RA, Dewedar A, Abdelmoneim A, Hossien EM. Aortic and pulmonary artery stiffness and cardiac function in children at risk for obesity. Echocardiography. 2012;29(8):984–90.

    Article  PubMed  Google Scholar 

  16. Di Salvo G, Pacileo G, Del Giudice EM, Natale F, Limongelli G, Verrengia M, et al. Abnormal myocardial deformation properties in obese, non-hypertensive children: an ambulatory blood pressure monitoring, standard echocardiographic, and strain rate imaging study. Eur Heart J. 2006;27(22):2689–95.

    Article  PubMed  Google Scholar 

  17. Ozdemir O, Hizli S, Abaci A, Agladioglu K, Aksoy S. Echocardiographic measurement of epicardial adipose tissue in obese children. Pediatr Cardiol. 2010;31(6):853–60.

    Article  PubMed  Google Scholar 

  18. Godfrey KM, Inskip HM, Hanson MA. The long-term effects of prenatal development on growth and metabolism. Semin Reprod Med. 2011;29(3):257–65.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Langley-Evans SC. Nutrition in early life and the programming of adult disease: a review. J Hum Nutr Diet Off J Br Diet Assoc. 2014.

  20. Forsdahl A. Are poor living conditions in childhood and adolescence an important risk factor for arteriosclerotic heart disease? Br J Prev Soc Med. 1977;31(2):91–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Barker DJ, Osmond C. Low birth weight and hypertension. BMJ. 1988;297(6641):134–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. Lancet. 1989;2(8663):577–80.

    Article  CAS  PubMed  Google Scholar 

  23. Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C, et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ. 1991;303(6809):1019–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Barker DJ, Hales CN, Fall CH, Osmond C, Phipps K, Clark PM. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993;36(1):62–7.

    Article  CAS  PubMed  Google Scholar 

  25. Jaddoe VW, de Jonge LL, Hofman A, Franco OH, Steegers EA, Gaillard R. First trimester fetal growth restriction and cardiovascular risk factors in school age children: population based cohort study. BMJ. 2014;348:g14. This article describes a recent human study on 1184 children that provide strong evidence for the link between fetal growth in early pregnancy and the development of cardiovascular risk factors.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Forsen T, Eriksson JG, Tuomilehto J, Osmond C, Barker DJ. Growth in utero and during childhood among women who develop coronary heart disease: longitudinal study. BMJ. 1999;319(7222):1403–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Phillips DI, Barker DJ, Fall CH, Seckl JR, Whorwood CB, Wood PJ, et al. Elevated plasma cortisol concentrations: a link between low birth weight and the insulin resistance syndrome? J Clin Endocrinol Metabol. 1998;83(3):757–60.

    CAS  Google Scholar 

  28. Skilton MR, Evans N, Griffiths KA, Harmer JA, Celermajer DS. Aortic wall thickness in newborns with intrauterine growth restriction. Lancet. 2005;365(9469):1484–6.

    Article  PubMed  Google Scholar 

  29. Eriksson JG, Forsen T, Tuomilehto J, Osmond C, Barker DJ. Early growth and coronary heart disease in later life: longitudinal study. BMJ. 2001;322(7292):949–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Eriksson JG, Forsen T, Tuomilehto J, Winter PD, Osmond C, Barker DJ. Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ. 1999;318(7181):427–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Roseboom T, de Rooij S, Painter R. The Dutch famine and its long-term consequences for adult health. Early Hum Dev. 2006;82(8):485–91.

    Article  PubMed  Google Scholar 

  32. Painter RC, Roseboom TJ, Bleker OP. Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol. 2005;20(3):345–52.

    Article  CAS  PubMed  Google Scholar 

  33. Dearden L, Ozanne SE. The road between early growth and obesity: new twists and turns. Am J Clin Nutr. 2014;100(1):6–7.

    Article  CAS  PubMed  Google Scholar 

  34. Barker DJ, Eriksson JG, Forsen T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002;31(6):1235–9.

    Article  CAS  PubMed  Google Scholar 

  35. Pettitt DJ, Jovanovic L. Birth weight as a predictor of type 2 diabetes mellitus: the U-shaped curve. Curr Diab Rep. 2001;1(1):78–81.

    Article  CAS  PubMed  Google Scholar 

  36. Ong KK. Size at birth, postnatal growth and risk of obesity. Horm Res. 2006;65 Suppl 3:65–9.

    Article  CAS  PubMed  Google Scholar 

  37. Evagelidou EN, Giapros VI, Challa AS, Cholevas VK, Vartholomatos GA, Siomou EC, et al. Prothrombotic state, cardiovascular, and metabolic syndrome risk factors in prepubertal children born large for gestational age. Diabetes Care. 2010;33(11):2468–70.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Poston L. Maternal obesity, gestational weight gain and diet as determinants of offspring long term health. Best Pract Res Clin Endocrinol Metab. 2012;26(5):627–39.

    Article  PubMed  Google Scholar 

  39. Curhan GC, Willett WC, Rimm EB, Spiegelman D, Ascherio AL, Stampfer MJ. Birth weight and adult hypertension, diabetes mellitus, and obesity in US men. Circulation. 1996;94(12):3246–50.

    Article  CAS  PubMed  Google Scholar 

  40. Reynolds RM, Osmond C, Phillips DI, Godfrey KM. Maternal BMI, parity, and pregnancy weight gain: influences on offspring adiposity in young adulthood. J Clin Endocrinol Metabol. 2010;95(12):5365–9.

    Article  CAS  Google Scholar 

  41. Oken E, Taveras EM, Kleinman KP, Rich-Edwards JW, Gillman MW. Gestational weight gain and child adiposity at age 3 years. Am J Obstet Gynecol. 2007;196(4):322–8.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Cooper R, Pinto Pereira SM, Power C, Hypponen E. Parental obesity and risk factors for cardiovascular disease among their offspring in mid-life: findings from the 1958 British Birth Cohort Study. Int J Obes. 2013;37(12):1590–6. This article describes the intergenerational influence of parental obesity, using data from 9328 individuals a strong association was observed between parental obesity and offspring CVD risk, even after adjusting for lifestyle and socioeconomic factors.

    Article  CAS  Google Scholar 

  43. Kalk P, Guthmann F, Krause K, Relle K, Godes M, Gossing G, et al. Impact of maternal body mass index on neonatal outcome. Eur J Med Res. 2009;14(5):216–22.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Reynolds RM, Allan KM, Raja EA, Bhattacharya S, McNeill G, Hannaford PC, et al. Maternal obesity during pregnancy and premature mortality from cardiovascular event in adult offspring: follow-up of 1 323 275 person years. BMJ. 2013;347:f4539. This study used birth records of 37,709 people to show a strong association between maternal obesity and subsequent offspring CVD-linked mortality in later life.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Murrin CM, Kelly GE, Tremblay RE, Kelleher CC. Body mass index and height over three generations: evidence from the Lifeways cross-generational cohort study. BMC Public Health. 2012;12:81.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Bertram CE, Hanson MA. Animal models and programming of the metabolic syndrome. Br Med Bull. 2001;60(1):103–21.

    Article  CAS  PubMed  Google Scholar 

  47. Burns SP, Desai M, Cohen RD, Hales CN, Iles RA, Germain JP, et al. Gluconeogenesis, glucose handling, and structural changes in livers of the adult offspring of rats partially deprived of protein during pregnancy and lactation. J Clin Investig. 1997;100(7):1768–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Bellinger L, Lilley C, Langley-Evans SC. Prenatal exposure to a maternal low-protein diet programmes a preference for high-fat foods in the young adult rat. Br J Nutr. 2004;92(3):513–20.

    Article  CAS  PubMed  Google Scholar 

  49. Bellinger L, Sculley DV, Langley-Evans SC. Exposure to undernutrition in fetal life determines fat distribution, locomotor activity and food intake in ageing rats. Int J Obes. 2006;30(5):729–38.

    Article  CAS  Google Scholar 

  50. Torrens C, Poston L, Hanson MA. Transmission of raised blood pressure and endothelial dysfunction to the F2 generation induced by maternal protein restriction in the F0, in the absence of dietary challenge in the F1 generation. Br J Nutr. 2008;100(4):760–6.

    Article  CAS  PubMed  Google Scholar 

  51. Langley-Evans SC, Sherman RC, Welham SJ, Nwagwu MO, Gardner DS, Jackson AA. Intrauterine programming of hypertension: the role of the renin-angiotensin system. Biochem Soc Trans. 1999;27(2):88–93.

    CAS  PubMed  Google Scholar 

  52. Van Abeelen AF, Veenendaal MV, Painter RC, De Rooij SR, Thangaratinam S, Van Der Post JA, et al. The fetal origins of hypertension: a systematic review and meta-analysis of the evidence from animal experiments of maternal undernutrition. J Hypertens. 2012;30(12):2255–67.

    Article  PubMed  Google Scholar 

  53. McMullen S, Gardner DS, Langley-Evans SC. Prenatal programming of angiotensin II type 2 receptor expression in the rat. Br J Nutr. 2004;91(1):133–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Burdge GC, Slater-Jefferies J, Torrens C, Phillips ES, Hanson MA, Lillycrop KA. Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr. 2007;97(3):435–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Lillycrop KA, Slater-Jefferies JL, Hanson MA, Godfrey KM, Jackson AA, Burdge GC. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr. 2007;97(6):1064–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Lillycrop KA, Phillips ES, Torrens C, Hanson MA, Jackson AA, Burdge GC. Feeding pregnant rats a protein-restricted diet persistently alters the methylation of specific cytosines in the hepatic PPARalpha promoter of the offspring. Br J Nutr. 2008;100(2):278–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Langley SC, Jackson AA. Increased systolic blood pressure in adult rats induced by fetal exposure to maternal low protein diets. Clin Sci (Lond). 1994;86(2):217–22.

    CAS  Google Scholar 

  58. Tarry-Adkins JL, Martin-Gronert MS, Fernandez-Twinn DS, Hargreaves I, Alfaradhi MZ, Land JM, et al. Poor maternal nutrition followed by accelerated postnatal growth leads to alterations in DNA damage and repair, oxidative and nitrosative stress, and oxidative defense capacity in rat heart. FASEB J Off Publ Fed Am Soc Exp Biol. 2013;27(1):379–90.

    CAS  Google Scholar 

  59. Nascimento L, Freitas CM, Silva-Filho R, Leite AC, Silva AB, da Silva AI, et al. The effect of maternal low-protein diet on the heart of adult offspring: role of mitochondria and oxidative stress. Appl Physiol Nutr Metabol Physiol Appl Nutr Metabol. 2014;39(8):880–7.

    Article  CAS  Google Scholar 

  60. Bogdarina I, Welham S, King PJ, Burns SP, Clark AJ. Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res. 2007;100(4):520–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Tsukuda K, Mogi M, Iwanami J, Min LJ, Jing F, Ohshima K, et al. Influence of angiotensin II type 1 receptor-associated protein on prenatal development and adult hypertension after maternal dietary protein restriction during pregnancy. J Am Soc Hypertens JASH. 2012;6(5):324–30.

    Article  CAS  Google Scholar 

  62. Briet M, Schiffrin EL. Aldosterone: effects on the kidney and cardiovascular system. Nat Rev Nephrol. 2010;6(5):261–73.

    Article  CAS  PubMed  Google Scholar 

  63. Gluckman PD, Lillycrop KA, Vickers MH, Pleasants AB, Phillips ES, Beedle AS, et al. Metabolic plasticity during mammalian development is directionally dependent on early nutritional status. Proc Natl Acad Sci U S A. 2007;104(31):12796–800.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Woodall SM, Johnston BM, Breier BH, Gluckman PD. Chronic maternal undernutrition in the rat leads to delayed postnatal growth and elevated blood pressure of offspring. Pediatr Res. 1996;40(3):438–43.

    Article  CAS  PubMed  Google Scholar 

  65. Samuelsson AM, Matthews PA, Argenton M, Christie MR, McConnell JM, Jansen EH, et al. Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension. 2008;51(2):383–92.

    Article  CAS  PubMed  Google Scholar 

  66. Blackmore HL, Niu Y, Fernandez-Twinn DS, Tarry-Adkins JL, Giussani DA, Ozanne SE. Maternal diet-induced obesity programs cardiovascular dysfunction in adult male mouse offspring independent of current body weight. Endocrinology. 2014;155(10):3970–80. This article reports on the findings of a mouse model of maternal obesity. Offspring of obese mothers developed cardiovascular dysfunction despite being fed a healthy diet and having a similar pattern of postnatal growth to controls.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Guberman C, Jellyman JK, Han G, Ross MG, Desai M. Maternal high-fat diet programs rat offspring hypertension and activates the adipose renin-angiotensin system. Am J Obstet Gynecol. 2013;209(3):8. This study reported on the results of a rat model of maternal obesity and its effects upon the RAS system in offspring adipose tissue. They found that exposure to maternal obesity increased expression of both angiotensin and ACE in adipose tissue, driving further adipogenesis while also causing hypertension.

    Article  Google Scholar 

  68. Hanson M, Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD. Developmental plasticity and developmental origins of non-communicable disease: theoretical considerations and epigenetic mechanisms. Prog Biophys Mol Biol. 2011;106(1):272–80.

    Article  PubMed  Google Scholar 

  69. Bateson P, Barker D, Clutton-Brock T, Deb D, D’Udine B, Foley RA, et al. Developmental plasticity and human health. Nature. 2004;430(6998):419–21.

    Article  CAS  PubMed  Google Scholar 

  70. Norris SA, Osmond C, Gigante D, Kuzawa CW, Ramakrishnan L, Lee NR, et al. Size at birth, weight gain in infancy and childhood, and adult diabetes risk in five low- or middle-income country birth cohorts. Diabetes Care. 2012;35(1):72–9.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Bavdekar A, Yajnik CS, Fall CH, Bapat S, Pandit AN, Deshpande V, et al. Insulin resistance syndrome in 8-year-old Indian children: small at birth, big at 8 years, or both? Diabetes. 1999;48(12):2422–9.

    Article  CAS  PubMed  Google Scholar 

  72. Huffman MD, Prabhakaran D, Osmond C, Fall CH, Tandon N, Lakshmy R, et al. Incidence of cardiovascular risk factors in an Indian urban cohort results from the New Delhi birth cohort. J Am Coll Cardiol. 2011;57(17):1765–74.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Gluckman PD, Hanson MA. Developmental and epigenetic pathways to obesity: an evolutionary-developmental perspective. Int J Obes (London). 2008;32 Suppl 7:S62–71.

    Article  CAS  Google Scholar 

  74. Peterson RE, Maes HH, Lin P, Kramer JR, Hesselbrock VM, Bauer LO, et al. On the association of common and rare genetic variation influencing body mass index: a combined SNP and CNV analysis. BMC Genomics. 2014;15:368. This article reports on a large scale SNP study that used a whole genome genotyping approach to examine the genetic basis for variation in BMI and concludes that genetic variation only accounts for 3.2% of observed variance, with this increasing to 11.5% when copy number variation was added into the model.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU, et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet. 2010;42(11):937–48.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Miranda TB, Jones PA. DNA methylation: the nuts and bolts of repression. J Cell Physiol. 2007;213(2):384–90.

    Article  CAS  PubMed  Google Scholar 

  77. Fulka H, St John JC, Fulka J, Hozak P. Chromatin in early mammalian embryos: achieving the pluripotent state. Differentiation. 2008;76(1):3–14.

    Article  CAS  PubMed  Google Scholar 

  78. Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet. 2002;3(9):662–73.

    Article  CAS  PubMed  Google Scholar 

  79. Morgan HD, Sutherland HG, Martin DI, Whitelaw E. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet. 1999;23(3):314–8.

    Article  CAS  PubMed  Google Scholar 

  80. Rakyan VK, Blewitt ME, Druker R, Preis JI, Whitelaw E. Metastable epialleles in mammals. Trends Genet TIG. 2002;18(7):348–51.

    Article  CAS  Google Scholar 

  81. Waterland RA, Travisano M, Tahiliani KG. Diet-induced hypermethylation at agouti viable yellow is not inherited transgenerationally through the female. FASEB J Off Publ Fed Am Soc Exp Biol. 2007;21(12):3380–5.

    CAS  Google Scholar 

  82. Waterland RA, Jirtle RL. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol. 2003;23(15):5293–300.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Bogdarina I, Haase A, Langley-Evans S, Clark AJ. Glucocorticoid effects on the programming of AT1b angiotensin receptor gene methylation and expression in the rat. PLoS One. 2010;5(2):e9237.

    Article  PubMed Central  PubMed  Google Scholar 

  84. Goyal R, Goyal D, Leitzke A, Gheorghe CP, Longo LD. Brain renin-angiotensin system: fetal epigenetic programming by maternal protein restriction during pregnancy. Reprod Sci. 2010;17(3):227–38.

    Article  PubMed  Google Scholar 

  85. Plagemann A, Harder T, Brunn M, Harder A, Roepke K, Wittrock-Staar M, et al. Hypothalamic proopiomelanocortin promoter methylation becomes altered by early overfeeding: an epigenetic model of obesity and the metabolic syndrome. J Physiol. 2009;587(Pt 20):4963–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  86. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008;105(44):17046–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet. 2009;18(21):4046–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C, et al. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes. 2011;60(5):1528–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Clarke-Harris R, Wilkin TJ, Hosking J, Pinkney J, Jeffery AN, Metcalf BS, et al. PGC1alpha promoter methylation in blood at 5–7 years predicts adiposity from 9 to 14 years (EarlyBird 50). Diabetes. 2014;63(7):2528–37. This study identified DNA methylation changes within the promoter of PGC1a in children that were predictive of later adiposity and showed the functional relevance of methylation at these specific CpG sites as binding sites for the PBX-1 or HOXB9 transcription factors when methylated.

    Article  PubMed  Google Scholar 

  90. West NA, Crume TL, Maligie MA, Dabelea D. Cardiovascular risk factors in children exposed to maternal diabetes in utero. Diabetologia. 2011;54(3):504–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Bhutta ZA, Ahmed T, Black RE, Cousens S, Dewey K, Giugliani E, et al. What works? Interventions for maternal and child undernutrition and survival. Lancet. 2008;371(9610):417–40.

    Article  PubMed  Google Scholar 

  92. Fall C. Maternal nutrition: effects on health in the next generation. Indian J Med Res. 2009;130(5):593–9.

    PubMed  Google Scholar 

  93. Kral JG, Biron S, Simard S, Hould FS, Lebel S, Marceau S, et al. Large maternal weight loss from obesity surgery prevents transmission of obesity to children who were followed for 2 to 18 years. Pediatrics. 2006;118(6):e1644–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

KMG is supported by the National Institute for Health Research through the NIHR Southampton Biomedical Research Centre and by the European Union’s Seventh Framework Programme (FP7/2007-2013), project Early Nutrition under grant agreement no. 289346.

Compliance with Ethics Guidelines

Conflict of Interest

Robert Murray and Karen Lillycrop have no conflicts of interest. Keith Godfrey reports other from Nestle Nutrition Institute, grants from Abbott Nutrition and Nestec, outside the submitted work; In addition, Dr. Godfrey has a patent phenotype prediction pending, a patent predictive use of CpG methylation pending, and a patent maternal nutrition composition pending.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen A. Lillycrop.

Additional information

This article is part of the Topical Collection on Genetics, Environment, Behavior and Risk Reduction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murray, R., Godfrey, K.M. & Lillycrop, K.A. The Early Life Origins of Cardiovascular Disease. Curr Cardiovasc Risk Rep 9, 15 (2015). https://doi.org/10.1007/s12170-015-0442-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12170-015-0442-9

Keywords

Navigation