Skip to main content

Early Life: Epigenetic Effects on Obesity, Diabetes, and Cancer

  • Chapter
  • First Online:
Epigenetics, Energy Balance, and Cancer

Part of the book series: Energy Balance and Cancer ((EBAC,volume 11))

  • 702 Accesses

Abstract

Abnormal intrauterine growth and other adverse early-life exposures may induce adaptations that in turn predispose the individual to chronic diseases later in life. This type of adaptation may be marked by changes in systems, organs, and tissues. The immediate benefits of early plasticity or adaptability may come at a cost with repercussions, such as increased susceptibility to diabetes, cardiovascular and other age-related diseases, as well as cancer, manifesting in adulthood. Some fetal adaptations may not necessarily be apparent at birth, but may be revealed later in life when invoked by cumulative environmental challenges (e.g., high fat or westernized diet). Early life exposures may represent the advancement of the normal decline of resistance to disease that occurs with aging. Developmental origin of adult disease may be viewed in the same framework of other progressive disorders defined by increasing epigenetic dysregulation, such as cancer and as such may have identifiable biomarkers. Assays that measure epigenetic changes hold great promise as biomarkers for disease states in which risk can be attributable to gene–environment interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Choudhury M, Friedman JE (2011) Obesity: childhood obesity—methylate now, pay later? Nat Rev Endocrinol 7(8):439–440

    Article  PubMed  Google Scholar 

  2. Wolffe AP, Guschin D (2000) Review: chromatin structural features and targets that regulate transcription. J Struct Biol 129(2-3):102–122

    Article  CAS  PubMed  Google Scholar 

  3. Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GH, Wong AH et al (2009) DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet 41(2):240–245

    Article  CAS  PubMed  Google Scholar 

  4. Saetrom P, Snove O Jr, Rossi JJ (2007) Epigenetics and microRNAs. Pediatr Res 61(5 Pt 2):17R–23R

    Article  CAS  PubMed  Google Scholar 

  5. Vargesson N (2015) Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res C Embryo Today 105(2):140–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kowalski TW, Sanseverino MT, Schuler-Faccini L, Vianna FS (2015) Thalidomide embryopathy: follow-up of cases born between 1959 and 2010. Birth Defects Res A Clin Mol Teratol 103(9):794–803

    Article  CAS  PubMed  Google Scholar 

  7. Kelsey FO (1988) Thalidomide update: regulatory aspects. Teratology 38(3):221–226

    Article  CAS  PubMed  Google Scholar 

  8. Paulino AC, Constine LS, Rubin P, Williams JP (2010) Normal tissue development, homeostasis, senescence, and the sensitivity to radiation injury across the age spectrum. Semin Radiat Oncol 20(1):12–20

    Article  PubMed  Google Scholar 

  9. Ravelli GP, Stein ZA, Susser MW (1976) Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 295(7):349–353

    Article  CAS  PubMed  Google Scholar 

  10. Barker DJ, Osmond C (1986) Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet 1(8489):1077–1081

    Article  CAS  PubMed  Google Scholar 

  11. Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ (1989) Weight in infancy and death from ischaemic heart disease. Lancet 2(8663):577–580

    Article  CAS  PubMed  Google Scholar 

  12. Barker DJ, Osmond C, Law CM (1989) The intrauterine and early postnatal origins of cardiovascular disease and chronic bronchitis. J Epidemiol Community Health 43(3):237–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hales CN, Barker DJ (1992) Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia 35(7):595–601

    Article  CAS  PubMed  Google Scholar 

  14. Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C et al (1991) Fetal and infant growth and impaired glucose tolerance at age 64. BMJ 303(6809):1019–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Painter RC, Roseboom TJ, Bleker OP (2005) Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol 20(3):345–352

    Article  CAS  PubMed  Google Scholar 

  16. Roseboom TJ, van der Meulen JH, Ravelli AC, Osmond C, Barker DJ, Bleker OP (2001) Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Mol Cell Endocrinol 185(1-2):93–98

    Article  CAS  PubMed  Google Scholar 

  17. Barker DJ, Gluckman PD, Godfrey KM, Harding JE, Owens JA, Robinson JS (1993) Fetal nutrition and cardiovascular disease in adult life. Lancet 341(8850):938–941

    Article  CAS  PubMed  Google Scholar 

  18. Frankel S, Elwood P, Sweetnam P, Yarnell J, Smith GD (1996) Birthweight, body-mass index in middle age, and incident coronary heart disease. Lancet 348(9040):1478–1480

    Article  CAS  PubMed  Google Scholar 

  19. Leon DA, Lithell HO, Vagero D, Koupilova I, Mohsen R, Berglund L et al (1998) Reduced fetal growth rate and increased risk of death from ischaemic heart disease: cohort study of 15 000 Swedish men and women born 1915–29. BMJ 317(7153):241–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stein CE, Fall CH, Kumaran K, Osmond C, Cox V, Barker DJ (1996) Fetal growth and coronary heart disease in south India. Lancet 348(9037):1269–1273

    Article  CAS  PubMed  Google Scholar 

  21. Rao KR, Padmavathi IJ, Raghunath M (2012) Maternal micronutrient restriction programs the body adiposity, adipocyte function and lipid metabolism in offspring: a review. Rev Endocr Metab Disord 13(2):103–108

    Article  CAS  PubMed  Google Scholar 

  22. Rogers I, Group E-BS (2003) The influence of birthweight and intrauterine environment on adiposity and fat distribution in later life. Int J Obes Relat Metab Disord 27(7):755–777

    Article  PubMed  Google Scholar 

  23. Huxley RR, Shiell AW, Law CM (2000) The role of size at birth and postnatal catch-up growth in determining systolic blood pressure: a systematic review of the literature. J Hypertens 18(7):815–831

    Article  CAS  PubMed  Google Scholar 

  24. Rexrode KM, Hennekens CH, Willett WC, Colditz GA, Stampfer MJ, Rich-Edwards JW et al (1997) A prospective study of body mass index, weight change, and risk of stroke in women. JAMA 277(19):1539–1545

    Article  CAS  PubMed  Google Scholar 

  25. Dennison EM, Arden NK, Keen RW, Syddall H, Day IN, Spector TD et al (2001) Birthweight, vitamin D receptor genotype and the programming of osteoporosis. Paediatr Perinat Epidemiol 15(3):211–219

    Article  CAS  PubMed  Google Scholar 

  26. Gershon A, Sudheimer K, Tirouvanziam R, Williams LM, O’Hara R (2013) The long-term impact of early adversity on late-life psychiatric disorders. Curr Psychiatry Rep 15(4):352

    Article  PubMed  Google Scholar 

  27. Kristjanson LJ, Chalmers KI (1991) Preventive work with families: issues facing public health nurses. J Adv Nurs 16(2):147–153

    Article  CAS  PubMed  Google Scholar 

  28. Waterland RA, Jirtle RL (2004) Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 20(1):63–68

    Article  CAS  PubMed  Google Scholar 

  29. Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL (2006) Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect 114(4):567–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lane RH, MacLennan NK, Hsu JL, Janke SM, Pham TD (2002) Increased hepatic peroxisome proliferator-activated receptor-gamma coactivator-1 gene expression in a rat model of intrauterine growth retardation and subsequent insulin resistance. Endocrinology 143(7):2486–2490

    CAS  PubMed  Google Scholar 

  31. Peterside IE, Selak MA, Simmons RA (2003) Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats. Am J Physiol Endocrinol Metab 285(6):E1258–E1266

    Article  CAS  PubMed  Google Scholar 

  32. Lane RH, Kelley DE, Ritov VH, Tsirka AE, Gruetzmacher EM (2001) Altered expression and function of mitochondrial beta-oxidation enzymes in juvenile intrauterine-growth-retarded rat skeletal muscle. Pediatr Res 50(1):83–90

    Article  CAS  PubMed  Google Scholar 

  33. Lane RH, Maclennan NK, Daood MJ, Hsu JL, Janke SM, Pham TD et al (2003) IUGR alters postnatal rat skeletal muscle peroxisome proliferator-activated receptor-gamma coactivator-1 gene expression in a fiber specific manner. Pediatr Res 53(6):994–1000

    Article  CAS  PubMed  Google Scholar 

  34. Ozanne SE, Olsen GS, Hansen LL, Tingey KJ, Nave BT, Wang CL et al (2003) Early growth restriction leads to down regulation of protein kinase C zeta and insulin resistance in skeletal muscle. J Endocrinol 177(2):235–241

    Article  CAS  PubMed  Google Scholar 

  35. Ozanne SE, Nicholas HC (2005) Poor fetal growth followed by rapid postnatal catch-up growth leads to premature death. Mech Ageing Dev 126(8):852–854

    Article  PubMed  Google Scholar 

  36. Delahaye F, Breton C, Risold PY, Enache M, Dutriez-Casteloot I, Laborie C et al (2008) Maternal perinatal undernutrition drastically reduces postnatal leptin surge and affects the development of arcuate nucleus proopiomelanocortin neurons in neonatal male rat pups. Endocrinology 149(2):470–475

    Article  CAS  PubMed  Google Scholar 

  37. Puglianiello A, Germani D, Cianfarani S (2009) Exposure to uteroplacental insufficiency reduces the expression of signal transducer and activator of transcription 3 and proopiomelanocortin in the hypothalamus of newborn rats. Pediatr Res 66(2):208–211

    Article  CAS  PubMed  Google Scholar 

  38. Begum G, Davies A, Stevens A, Oliver M, Jaquiery A, Challis J et al (2013) Maternal undernutrition programs tissue-specific epigenetic changes in the glucocorticoid receptor in adult offspring. Endocrinology 154(12):4560–4569

    Article  CAS  PubMed  Google Scholar 

  39. Chen M, Xiong F, Zhang L (2013) Promoter methylation of Egr-1 site contributes to fetal hypoxia-mediated PKCepsilon gene repression in the developing heart. Am J Physiol Regul Integr Comp Physiol 304(9):R683–R689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vidal AC, Murphy SK, Murtha AP, Schildkraut JM, Soubry A, Huang Z et al (2013) Associations between antibiotic exposure during pregnancy, birth weight and aberrant methylation at imprinted genes among offspring. Int J Obes (Lond) 37(7):907–913

    Article  CAS  Google Scholar 

  41. Kaati G, Bygren LO, Edvinsson S (2002) Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet 10(11):682–688

    Article  CAS  PubMed  Google Scholar 

  42. Pembrey ME, Bygren LO, Kaati G, Edvinsson S, Northstone K, Sjostrom M et al (2006) Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet 14(2):159–166

    Article  PubMed  Google Scholar 

  43. Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105(44):17046–17049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fryer AA, Nafee TM, Ismail KM, Carroll WD, Emes RD, Farrell WE (2009) LINE-1 DNA methylation is inversely correlated with cord plasma homocysteine in man: a preliminary study. Epigenetics 4(6):394–398

    Article  CAS  PubMed  Google Scholar 

  45. Fryer AA, Emes RD, Ismail KM, Haworth KE, Mein C, Carroll WD et al (2011) Quantitative, high-resolution epigenetic profiling of CpG loci identifies associations with cord blood plasma homocysteine and birth weight in humans. Epigenetics 6(1):86–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kile ML, Baccarelli A, Tarantini L, Hoffman E, Wright RO, Christiani DC (2010) Correlation of global and gene-specific DNA methylation in maternal-infant pairs. PLoS One 5(10):e13730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Einstein F, Thompson RF, Bhagat TD, Fazzari MJ, Verma A, Barzilai N et al (2010) Cytosine methylation dysregulation in neonates following intrauterine growth restriction. PLoS One 5(1):e8887

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Heijmans BT, Kremer D, Tobi EW, Boomsma DI, Slagboom PE (2007) Heritable rather than age-related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus. Hum Mol Genet 16(5):547–554

    Article  CAS  PubMed  Google Scholar 

  49. Boney CM, Verma A, Tucker R, Vohr BR (2005) Metabolic syndrome in childhood: association with birth weight, maternal obesity, and gestational diabetes mellitus. Pediatrics 115(3):e290–e296

    Article  PubMed  Google Scholar 

  50. Baker JL, Olsen LW, Sorensen TI (2008) Weight at birth and all-cause mortality in adulthood. Epidemiology 19(2):197–203

    Article  PubMed  Google Scholar 

  51. Williams L, Seki Y, Vuguin PM, Charron MJ (2014) Animal models of in utero exposure to a high fat diet: a review. Biochim Biophys Acta 1842(3):507–519

    Article  CAS  PubMed  Google Scholar 

  52. Dunn GA, Bale TL (2009) Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology 150(11):4999–5009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dunn GA, Bale TL (2011) Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology 152(6):2228–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Delahaye F, Wijetunga NA, Heo HJ, Tozour JN, Zhao YM, Greally JM et al (2014) Sexual dimorphism in epigenomic responses of stem cells to extreme fetal growth. Nat Commun 5:5187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ornoy A (2011) Prenatal origin of obesity and their complications: gestational diabetes, maternal overweight and the paradoxical effects of fetal growth restriction and macrosomia. Reprod Toxicol 32(2):205–212

    Article  CAS  PubMed  Google Scholar 

  56. Lisboa PC, de Oliveira E, de Moura EG (2012) Obesity and endocrine dysfunction programmed by maternal smoking in pregnancy and lactation. Front Physiol 3:437

    Article  PubMed  PubMed Central  Google Scholar 

  57. Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C et al (2011) Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 60(5):1528–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vucetic Z, Kimmel J, Totoki K, Hollenbeck E, Reyes TM (2010) Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology 151(10):4756–4764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Masuyama H, Hiramatsu Y (2012) Effects of a high-fat diet exposure in utero on the metabolic syndrome-like phenomenon in mouse offspring through epigenetic changes in adipocytokine gene expression. Endocrinology 153(6):2823–2830

    Article  CAS  PubMed  Google Scholar 

  60. Vazeille E, Slimani L, Claustre A, Magne H, Labas R, Bechet D et al (2012) Curcumin treatment prevents increased proteasome and apoptosome activities in rat skeletal muscle during reloading and improves subsequent recovery. J Nutr Biochem 23(3):245–251

    Article  CAS  PubMed  Google Scholar 

  61. Kelsall CJ, Hoile SP, Irvine NA, Masoodi M, Torrens C, Lillycrop KA et al (2012) Vascular dysfunction induced in offspring by maternal dietary fat involves altered arterial polyunsaturated fatty acid biosynthesis. PLoS One 7(4):e34492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang QY, Liang JF, Rogers CJ, Zhao JX, Zhu MJ, Du M (2013) Maternal obesity induces epigenetic modifications to facilitate Zfp423 expression and enhance adipogenic differentiation in fetal mice. Diabetes 62(11):3727–3735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Newbold RR (2010) Impact of environmental endocrine disrupting chemicals on the development of obesity. Hormones (Athens) 9(3):206–217

    Article  Google Scholar 

  64. Smink A, Ribas-Fito N, Garcia R, Torrent M, Mendez MA, Grimalt JO et al (2008) Exposure to hexachlorobenzene during pregnancy increases the risk of overweight in children aged 6 years. Acta Paediatr 97(10):1465–1469

    Article  CAS  PubMed  Google Scholar 

  65. Janesick A, Blumberg B (2011) Endocrine disrupting chemicals and the developmental programming of adipogenesis and obesity. Birth Defects Res C Embryo Today 93(1):34–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Karmaus W, Osuch JR, Eneli I, Mudd LM, Zhang J, Mikucki D et al (2009) Maternal levels of dichlorodiphenyl-dichloroethylene (DDE) may increase weight and body mass index in adult female offspring. Occup Environ Med 66(3):143–149

    Article  CAS  PubMed  Google Scholar 

  67. Mumtaz MM, George JD, Gold KW, Cibulas W, DeRosa CT (1996) ATSDR evaluation of health effects of chemicals. IV. Polycyclic aromatic hydrocarbons (PAHs): understanding a complex problem. Toxicol Ind Health 12(6):742–971

    Article  CAS  PubMed  Google Scholar 

  68. Perera FP, Rauh V, Tsai WY, Kinney P, Camann D, Barr D et al (2003) Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic population. Environ Health Perspect 111(2):201–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Perera FP, Rauh V, Whyatt RM, Tsai WY, Bernert JT, Tu YH et al (2004) Molecular evidence of an interaction between prenatal environmental exposures and birth outcomes in a multiethnic population. Environ Health Perspect 112(5):626–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Irigaray P, Ogier V, Jacquenet S, Notet V, Sibille P, Mejean L et al (2006) Benzo[a]pyrene impairs beta-adrenergic stimulation of adipose tissue lipolysis and causes weight gain in mice. A novel molecular mechanism of toxicity for a common food pollutant. FEBS J 273(7):1362–1372

    Article  CAS  PubMed  Google Scholar 

  71. Perera F, Tang WY, Herbstman J, Tang D, Levin L, Miller R et al (2009) Relation of DNA methylation of 5′-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS One 4(2):e4488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Suter M, Abramovici A, Showalter L, Hu M, Shope CD, Varner M et al (2010) In utero tobacco exposure epigenetically modifies placental CYP1A1 expression. Metabolism 59(10):1481–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lyte M, Bick PH (1986) Modulation of interleukin-1 production by macrophages following benzo(a)pyrene exposure. Int J Immunopharmacol 8(3):377–381

    Article  CAS  PubMed  Google Scholar 

  74. Vandebriel RJ, Meredith C, Scott MP, Roholl PJ, Van Loveren H (1998) Effects of in vivo exposure to bis(tri-n-butyltin)oxide, hexachlorobenzene, and benzo(a)pyrene on cytokine (receptor) mRNA levels in cultured rat splenocytes and on IL-2 receptor protein levels. Toxicol Appl Pharmacol 148(1):126–136

    Article  CAS  PubMed  Google Scholar 

  75. Pei XH, Nakanishi Y, Inoue H, Takayama K, Bai F, Hara N (2002) Polycyclic aromatic hydrocarbons induce IL-8 expression through nuclear factor kappaB activation in A549 cell line. Cytokine 19(5):236–241

    Article  CAS  PubMed  Google Scholar 

  76. Khalil A, Villard PH, Dao MA, Burcelin R, Champion S, Fouchier F et al (2010) Polycyclic aromatic hydrocarbons potentiate high-fat diet effects on intestinal inflammation. Toxicol Lett 196(3):161–167

    Article  CAS  PubMed  Google Scholar 

  77. Withey JR, Shedden J, Law FC, Abedini S (1993) Distribution of benzo[a]pyrene in pregnant rats following inhalation exposure and a comparison with similar data obtained with pyrene. J Appl Toxicol 13(3):193–202

    Article  CAS  PubMed  Google Scholar 

  78. Perera FP, Tang D, Tu YH, Cruz LA, Borjas M, Bernert T et al (2004) Biomarkers in maternal and newborn blood indicate heightened fetal susceptibility to procarcinogenic DNA damage. Environ Health Perspect 112(10):1133–1136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Rundle A, Hoepner L, Hassoun A, Oberfield S, Freyer G, Holmes D et al (2012) Association of childhood obesity with maternal exposure to ambient air polycyclic aromatic hydrocarbons during pregnancy. Am J Epidemiol 175(11):1163–1172

    Article  PubMed  PubMed Central  Google Scholar 

  80. Tang D, Li TY, Liu JJ, Chen YH, Qu L, Perera F (2006) PAH-DNA adducts in cord blood and fetal and child development in a Chinese cohort. Environ Health Perspect 114(8):1297–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240(4854):889–895

    Article  CAS  PubMed  Google Scholar 

  82. Koch HM, Calafat AM (2009) Human body burdens of chemicals used in plastic manufacture. Philos Trans R Soc Lond B Biol Sci 364(1526):2063–2078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Jacobs S, Teixeira DS, Guilherme C, da Rocha CF, Aranda BC, Reis AR et al (2014) The impact of maternal consumption of cafeteria diet on reproductive function in the offspring. Physiol Behav 129:280–286

    Article  CAS  PubMed  Google Scholar 

  84. Li CC, Young PE, Maloney CA, Eaton SA, Cowley MJ, Buckland ME et al (2013) Maternal obesity and diabetes induces latent metabolic defects and widespread epigenetic changes in isogenic mice. Epigenetics 8(6):602–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Barres R, Osler ME, Yan J, Rune A, Fritz T, Caidahl K et al (2009) Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab 10(3):189–198

    Article  CAS  PubMed  Google Scholar 

  86. Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD (2000) Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab 279(1):E83–E87

    CAS  PubMed  Google Scholar 

  87. Garofano A, Czernichow P, Breant B (1999) Effect of ageing on beta-cell mass and function in rats malnourished during the perinatal period. Diabetologia 42(6):711–718

    Article  CAS  PubMed  Google Scholar 

  88. Park JH, Stoffers DA, Nicholls RD, Simmons RA (2008) Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1. J Clin Invest 118(6):2316–2324

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang BT, Dayeh TA, Volkov PA, Kirkpatrick CL, Malmgren S, Jing X et al (2012) Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol 26(7):1203–1212

    Article  CAS  PubMed  Google Scholar 

  90. Dahri S, Snoeck A, Reusens-Billen B, Remacle C, Hoet JJ (1991) Islet function in offspring of mothers on low-protein diet during gestation. Diabetes 40(Suppl 2):115–120

    Article  CAS  PubMed  Google Scholar 

  91. Burns SP, Desai M, Cohen RD, Hales CN, Iles RA, Germain JP et al (1997) Gluconeogenesis, glucose handling, and structural changes in livers of the adult offspring of rats partially deprived of protein during pregnancy and lactation. J Clin Invest 100(7):1768–1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ozanne SE, Wang CL, Coleman N, Smith GD (1996) Altered muscle insulin sensitivity in the male offspring of protein-malnourished rats. Am J Physiol 271(6 Pt 1):E1128–E1134

    CAS  PubMed  Google Scholar 

  93. Ozanne SE, Dorling MW, Wang CL, Petry CJ (2000) Depot-specific effects of early growth retardation on adipocyte insulin action. Horm Metab Res 32(2):71–75

    Article  CAS  PubMed  Google Scholar 

  94. Hales CN, Desai M, Ozanne SE, Crowther NJ (1996) Fishing in the stream of diabetes: from measuring insulin to the control of fetal organogenesis. Biochem Soc Trans 24(2):341–350

    Article  CAS  PubMed  Google Scholar 

  95. Strakovsky RS, Zhang X, Zhou D, Pan YX (2011) Gestational high fat diet programs hepatic phosphoenolpyruvate carboxykinase gene expression and histone modification in neonatal offspring rats. J Physiol 589(Pt 11):2707–2717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang L, Xu S, Lee JE, Baldridge A, Grullon S, Peng W et al (2013) Histone H3K9 methyltransferase G9a represses PPARgamma expression and adipogenesis. EMBO J 32(1):45–59

    Article  PubMed  CAS  Google Scholar 

  97. Abu-Farha M, Tiss A, Abubaker J, Khadir A, Al-Ghimlas F, Al-Khairi I et al (2013) Proteomics analysis of human obesity reveals the epigenetic factor HDAC4 as a potential target for obesity. PLoS One 8(9):e75342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gillman MW (2005) Developmental origins of health and disease. N Engl J Med 353(17):1848–1850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Barker DJ (2012) Sir Richard Doll Lecture. Developmental origins of chronic disease. Public Health 126(3):185–189

    Article  CAS  PubMed  Google Scholar 

  100. Swanson JM, Entringer S, Buss C, Wadhwa PD (2009) Developmental origins of health and disease: environmental exposures. Semin Reprod Med 27(5):391–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Trichopoulos D (1990) Hypothesis: does breast cancer originate in utero? Lancet 335(8695):939–940

    Article  CAS  PubMed  Google Scholar 

  102. Troisi R, Potischman N, Hoover RN (2007) Exploring the underlying hormonal mechanisms of prenatal risk factors for breast cancer: a review and commentary. Cancer Epidemiol Biomarkers Prev 16(9):1700–1712

    Article  CAS  PubMed  Google Scholar 

  103. Xue F, Michels KB (2007) Intrauterine factors and risk of breast cancer: a systematic review and meta-analysis of current evidence. Lancet Oncol 8(12):1088–1100

    Article  PubMed  Google Scholar 

  104. Eriksson M, Wedel H, Wallander MA, Krakau I, Hugosson J, Carlsson S et al (2007) The impact of birth weight on prostate cancer incidence and mortality in a population-based study of men born in 1913 and followed up from 50 to 85 years of age. Prostate 67(11):1247–1254

    Article  PubMed  Google Scholar 

  105. Vatten LJ, Nilsen TI, Tretli S, Trichopoulos D, Romundstad PR (2005) Size at birth and risk of breast cancer: prospective population-based study. Int J Cancer 114(3):461–464

    Article  CAS  PubMed  Google Scholar 

  106. Platz EA, Giovannucci E, Rimm EB, Curhan GC, Spiegelman D, Colditz GA et al (1998) Retrospective analysis of birth weight and prostate cancer in the Health Professionals Follow-up Study. Am J Epidemiol 147(12):1140–1144

    Article  CAS  PubMed  Google Scholar 

  107. Hjalgrim LL, Westergaard T, Rostgaard K, Schmiegelow K, Melbye M, Hjalgrim H et al (2003) Birth weight as a risk factor for childhood leukemia: a meta-analysis of 18 epidemiologic studies. Am J Epidemiol 158(8):724–735

    Article  PubMed  Google Scholar 

  108. Eriksson JG, Thornburg KL, Osmond C, Kajantie E, Barker DJ (2010) The prenatal origins of lung cancer. I. The fetus. Am J Hum Biol 22(4):508–511

    Article  PubMed  Google Scholar 

  109. Barker DJ, Thornburg KL, Osmond C, Kajantie E, Eriksson JG (2010) The prenatal origins of lung cancer. II. The placenta. Am J Hum Biol 22(4):512–516

    Article  PubMed  Google Scholar 

  110. Herbst AL, Ulfelder H, Poskanzer DC (1971) Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumor appearance in young women. N Engl J Med 284(15):878–881

    Article  CAS  PubMed  Google Scholar 

  111. Baird DD, Newbold R (2005) Prenatal diethylstilbestrol (DES) exposure is associated with uterine leiomyoma development. Reprod Toxicol 20(1):81–84

    Article  CAS  PubMed  Google Scholar 

  112. Palmer JR, Wise LA, Hatch EE, Troisi R, Titus-Ernstoff L, Strohsnitter W et al (2006) Prenatal diethylstilbestrol exposure and risk of breast cancer. Cancer Epidemiol Biomarkers Prev 15(8):1509–1514

    Article  CAS  PubMed  Google Scholar 

  113. Schrager S, Potter BE (2004) Diethylstilbestrol exposure. Am Fam Physician 69(10):2395–2400

    PubMed  Google Scholar 

  114. Rohrmann S, Sutcliffe CG, Bienstock JL, Monsegue D, Akereyeni F, Bradwin G et al (2009) Racial variation in sex steroid hormones and the insulin-like growth factor axis in umbilical cord blood of male neonates. Cancer Epidemiol Biomarkers Prev 18(5):1484–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Walker CL, Ho SM (2012) Developmental reprogramming of cancer susceptibility. Nat Rev Cancer 12(7):479–486

    Article  CAS  PubMed  Google Scholar 

  116. De Assis S, Hilakivi-Clarke L (2006) Timing of dietary estrogenic exposures and breast cancer risk. Ann N Y Acad Sci 1089:14–35

    Article  PubMed  CAS  Google Scholar 

  117. Soto AM, Vandenberg LN, Maffini MV, Sonnenschein C (2008) Does breast cancer start in the womb? Basic Clin Pharmacol Toxicol 102(2):125–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. de Assis S, Warri A, Cruz MI, Laja O, Tian Y, Zhang B et al (2012) High-fat or ethinyl-oestradiol intake during pregnancy increases mammary cancer risk in several generations of offspring. Nat Commun 3:1053

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Tost J (2009) DNA methylation: an introduction to the biology and the disease-associated changes of a promising biomarker. Methods Mol Biol 507:3–20

    Article  CAS  PubMed  Google Scholar 

  120. Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A et al (2010) The NIH roadmap epigenomics mapping consortium. Nat Biotechnol 28(10):1045–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Wijetunga NA, Delahaye F, Zhao YM, Golden A, Mar JC, Einstein FH et al (2014) The meta-epigenomic structure of purified human stem cell populations is defined at cis-regulatory sequences. Nat Commun 5:5195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Martin L (1945) The hereditary and familial aspects of exophthalmic goitre and nodular goitre. Q J Med 14:207–219

    CAS  PubMed  Google Scholar 

  123. Price ND, Trent J, El-Naggar AK, Cogdell D, Taylor E, Hunt KK et al (2007) Highly accurate two-gene classifier for differentiating gastrointestinal stromal tumors and leiomyosarcomas. Proc Natl Acad Sci U S A 104(9):3414–3419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lambert MP, Paliwal A, Vaissiere T, Chemin I, Zoulim F, Tommasino M et al (2011) Aberrant DNA methylation distinguishes hepatocellular carcinoma associated with HBV and HCV infection and alcohol intake. J Hepatol 54(4):705–715

    Article  CAS  PubMed  Google Scholar 

  125. Lima SC, Hernandez-Vargas H, Herceg Z (2010) Epigenetic signatures in cancer: implications for the control of cancer in the clinic. Curr Opin Mol Ther 12(3):316–324

    CAS  PubMed  Google Scholar 

  126. Wild CP (2005) Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers Prev 14(8):1847–1850

    Article  CAS  PubMed  Google Scholar 

  127. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD et al (2007) Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39(3):311–318

    Article  CAS  PubMed  Google Scholar 

  128. Hoque MO, Kim MS, Ostrow KL, Liu J, Wisman GB, Park HL et al (2008) Genome-wide promoter analysis uncovers portions of the cancer methylome. Cancer Res 68(8):2661–2670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yamashita S, Hosoya K, Gyobu K, Takeshima H, Ushijima T (2009) Development of a novel output value for quantitative assessment in methylated DNA immunoprecipitation-CpG island microarray analysis. DNA Res 16(5):275–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Michels KB, Binder AM, Dedeurwaerder S, Epstein CB, Greally JM, Gut I et al (2013) Recommendations for the design and analysis of epigenome-wide association studies. Nat Methods 10(10):949–955

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francine Hughes Einstein M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Einstein, F.H. (2016). Early Life: Epigenetic Effects on Obesity, Diabetes, and Cancer. In: Berger, N. (eds) Epigenetics, Energy Balance, and Cancer. Energy Balance and Cancer, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-41610-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-41610-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-41608-3

  • Online ISBN: 978-3-319-41610-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics