Food Analytical Methods

, Volume 10, Issue 8, pp 2781–2791 | Cite as

Design of Sonotrode Ultrasound-Assisted Extraction of Phenolic Compounds from Psidium guajava L. Leaves

  • Elixabet Díaz-de-Cerio
  • Urszula Tylewicz
  • Vito VerardoEmail author
  • Alberto Fernández-Gutiérrez
  • Antonio Segura-Carretero
  • Santina Romani


Psidium guajava L. has gained a special attention as health plant due to the presence of phenolic compounds. Box-Behnken design (BBD) has been applied for the extraction of target compounds from guava leaves via sonotrode ultrasound-assisted extraction (UAE). Different extraction times (5, 30, and 55 min), ratios of ethanol/water (50, 75, and 100% (v/v)), and ultrasound (US) power (80, 240, and 400 W) were tested to find their effect on the sum of phenolic compound (SPC), flavonols and flavan-3-ols via HPLC-ESI-QqQ-MS, and antioxidant activity (DPPH and TEAC assays). The best process conditions were as follows: 40 min, 60% ethanol/water (v/v), and 200 W. Established method has been used to extract phenolic compounds in two guava leaves varieties (pyrifera and pomifera). Pyrifera var. showed greater values of the SPC via HPLC-ESI-QqQ-MS (49.7 mg/g leaf dry weight (d.w.)), flavonols (12.51 mg/g d.w.), flavan-3-ols (7.20 mg/g d.w.), individual phenolic compounds, and antioxidant activity (8970 ± 5 and 465 ± 6 μmol Trolox/g leaf d.w, respectively) than pomifera var. Conventional extraction showed lower amounts of phenolic compounds (7.81 ± 0.03 and 4.64 ± 0.01 mg/g leaf d.w. for flavonols and flavan-3ols, respectively) in comparison to the ultrasound-assisted ones.


Guava (Psidium guajava L.) leaves Ultrasound-assisted extraction Response surface methodology Phenolic compounds HPLC-ESI-QqQ-MS Antioxidant activity 



The author Elixabet Díaz-de-Cerio would like to thank to the University of Granada and the CEIBiotic for the “Convocatoria de movilidad internacional de jóvenes investigadores de programas de doctorado” grant. Vito Verardo thanks the Spanish Ministry of Economy and Competitiveness (MINECO) for “Juan de la Cierva” post-doctoral contract.

Compliance with Ethical Standards


Not applicable.

Conflict of Interest

Elixabet Díaz-de-Cerio that she has no conflict of interest. Urszula Tylewicz that she has no conflict of interest. Vito Verardo that he has no conflict of interest. Alberto Fernández-Gutiérrez that he has no conflict of interest. Antonio Segura-Carretero that he has no conflict of interest. Santina Romani that she has no conflict of interest.

Ethical Approval

This article does not contain any studies with human or animal subjects.

Informed Consent

Informed consent was not applicable.


  1. Aybastier Ö, Işik E, Şahin S, Demir C (2013) Optimisation of ultrasonic-assisted extraction of antioxidant compounds from blackberry leaves using response surface methodology. Ind Crop Prod 44:558–565. doi: 10.1016/j.foodchem.2013.04.003 CrossRefGoogle Scholar
  2. Barba FJ, Galanakis CM, Esteve MJ et al (2015) Potential use of pulsed electric technologies and ultrasounds to improve the recovery of high-added value compounds from blackberries. J Food Eng 167:38–44. doi: 10.1016/j.jfoodeng.2015.02.001 CrossRefGoogle Scholar
  3. Barbalho SM, Farinazzi-Machado FMV, de Alvares GR et al (2012) Psidium guajava (guava): a plant of multipurpose medicinal applications. Med Aromat Plants 1:1–6. doi: 10.4172/2167-0412.1000104 Google Scholar
  4. Baş D, Boyacı İH (2007) Modeling and optimization I: usability of response surface methodology. J Food Eng 78:836–845. doi: 10.1016/j.jfoodeng.2005.11.024 CrossRefGoogle Scholar
  5. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Leb Wiss u Technol 28:25–30CrossRefGoogle Scholar
  6. Chemat F, Zill-e-Huma KMK (2011) Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem 18:813–835. doi: 10.1016/j.ultsonch.2010.11.023 CrossRefGoogle Scholar
  7. Deng Q, Zinoviadou KG, Galanakis CM et al (2014) The effects of conventional and non-conventional processing on Glucosinolates and its derived forms, Isothiocyanates: extraction, degradation, and applications. Food Eng Rev 7:357–381. doi: 10.1007/s12393-014-9104-9 CrossRefGoogle Scholar
  8. Dhaouadi K, Meliti W, Dallali S et al (2015) Commercial Lawsonia inermis L. dried leaves and processed powder: Phytochemical composition, antioxidant, antibacterial, and allelopathic activities. Ind Crop Prod 77:544–552. doi: 10.1016/j.indcrop.2015.09.037 CrossRefGoogle Scholar
  9. Díaz-de-Cerio E, Gómez-Caravaca AM, Verardo V et al (2016) Determination of guava (Psidium guajava L.) leaf phenolic compounds using HPLC-DAD-QTOF-MS. J Funct Foods 22:376–388. doi: 10.1017/CBO9781107415324.004 CrossRefGoogle Scholar
  10. Engström MT, Pälijärvi M, Salminen J-P (2015) Rapid fingerprint analysis of plant extracts for Ellagitannins, Gallic acid, and Quinic acid derivatives and quercetin-, Kaempferol- and myricetin-based flavonol glycosides by UPLC-QqQ-MS/MS. J Agric Food Chem 63:4068–4079. doi: 10.1021/acs.jafc.5b00595 CrossRefGoogle Scholar
  11. Ferreira SLC, Bruns RE, Ferreira HS et al (2007) Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597:179–186. doi: 10.1016/j.aca.2007.07.011 CrossRefGoogle Scholar
  12. Galanakis CM (2013) Emerging technologies for the production of nutraceuticals from agricultural by-products: a viewpoint of opportunities and challenges. Food Bioprod Process 91:575–579. doi: 10.1016/j.fbp.2013.01.004 CrossRefGoogle Scholar
  13. Galanakis CM (2012) Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications. Trends Food Sci Technol 26:68–87. doi: 10.1016/j.tifs.2012.03.003 CrossRefGoogle Scholar
  14. Galanakis CM, Schieber A (2014) Editorial. Food Res Int 65:299–300. doi: 10.1016/j.foodres.2014.11.019 CrossRefGoogle Scholar
  15. Gutiérrez RMP, Mitchell S, Solis RV (2008) Psidium guajava: a review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 117:1–27. doi: 10.1016/j.jep.2008.01.025 CrossRefGoogle Scholar
  16. Heng MY, Tan SN, Yong JWH, Ong ES (2013) Emerging green technologies for the chemical standardization of botanicals and herbal preparations. TrAC Trends Anal Chem 50:1–10. doi: 10.1016/j.trac.2013.03.012 CrossRefGoogle Scholar
  17. Hibbert DB (2012) Experimental design in chromatography: A tutorial review. J Chromatogr B 910:2–13. doi: 10.1016/j.jchromb.2012.01.020 CrossRefGoogle Scholar
  18. Jacotet-Navarro M, Rombaut N, Fabiano-Tixier A-S et al (2015) Ultrasound versus microwave as green processes for extraction of rosmarinic, carnosic and ursolic acids from rosemary. Ultrason Sonochem 27:102–109. doi: 10.1016/j.ultsonch.2015.05.006 CrossRefGoogle Scholar
  19. Kaur C, Kapoor HC (2001) Antioxidants in fruits and vegetables - the millennium’s health. Int J Food Sci Technol 36:703–725. doi: 10.1046/j.1365-2621.2001.00513.x CrossRefGoogle Scholar
  20. Khan MK, Abert-Vian M, Fabiano-Tixier AS et al (2010) Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem 119:851–858. doi: 10.1016/j.foodchem.2009.08.046 CrossRefGoogle Scholar
  21. Liu C-W, Wang Y-C, Hsieh C-C et al (2015) Guava (Psidium guajava Linn.) leaf extract promotes glucose uptake and glycogen accumulation by modulating the insulin signaling pathway in high-glucose-induced insulin-resistant mouse FL83B cells. Process Biochem 50:1128–1135. doi: 10.1016/j.procbio.2015.03.022 CrossRefGoogle Scholar
  22. Mailoa MN, Mahendradatta M, Laga A, Djide N (2013) Tannin extract of guava leaves ( Psidium guajava L ) variation with concentration organic solvents. Int J Sci Technol Res 2:106–110Google Scholar
  23. Morton JF (1987) Fruits of warm climates. Miami, FLGoogle Scholar
  24. Pan Z, Qu W, Ma H et al (2012) Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrason Sonochem 19:365–372. doi: 10.1016/j.ultsonch.2011.05.015 CrossRefGoogle Scholar
  25. Parejo I, Codina C, Petrakis C, Kefalas P (2000) Evaluation of scavenging activity assessed by Co ( II )/ EDTA-induced luminol chemiluminescence and DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical assay. J Pharmacol Toxicol Methods 44:507–512CrossRefGoogle Scholar
  26. Pingret D, Fabiano-Tixier AS, Le Bourvellec C et al (2012) Lab and pilot-scale ultrasound-assisted water extraction of polyphenols from apple pomace. J Food Eng 111:73–81. doi: 10.1016/j.jfoodeng.2012.01.026 CrossRefGoogle Scholar
  27. Ramić M, Vidović S, Zeković Z et al (2015) Modeling and optimization of ultrasound-assisted extraction of polyphenolic compounds from Aronia melanocarpa by-products from filter-tea factory. Ultrason Sonochem 23:360–368. doi: 10.1016/j.ultsonch.2014.10.002 CrossRefGoogle Scholar
  28. Re R, Pellegrini N, Proteggente A et al (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237CrossRefGoogle Scholar
  29. Roselló-Soto E, Galanakis CM, Brnčić M et al (2015) Clean recovery of antioxidant compounds from plant foods, by-products and algae assisted by ultrasounds processing. Modeling approaches to optimize processing conditions. Trends Food Sci Technol 42:134–149. doi: 10.1016/j.tifs.2015.01.002 CrossRefGoogle Scholar
  30. Tao Y, Sun D-W (2015) Enhancement of food processes by ultrasound: a review. Crit Rev Food Sci Nutr 55:570–594. doi: 10.1080/10408398.2012.667849 CrossRefGoogle Scholar
  31. Tay P, Tan C, Abas F et al (2014) Assessment of extraction parameters on antioxidant capacity, polyphenol content, Epigallocatechin gallate (EGCG), Epicatechin gallate (ECG) and Iriflophenone 3-C-β-Glucoside of Agarwood (Aquilaria crassna) young leaves. Molecules 19:12304–12319. doi: 10.3390/molecules190812304 CrossRefGoogle Scholar
  32. Wang F, Guo XY, Zhang DN et al (2015) Ultrasound-assisted extraction and purification of taurine from the red algae Porphyra yezoensis. Ultrason Sonochem 24:36–42. doi: 10.1016/j.ultsonch.2014.12.009 CrossRefGoogle Scholar
  33. Wong BY, Tan CP, Ho CW (2013) Effect of solid-to-solvent ratio on phenolic content and antioxidant capacities of “Dukung Anak” (Phyllanthus niruri). Int Food Res J 20:325–330Google Scholar
  34. Wong WH, Lee WX, Ramanan RN et al (2015) Two level half factorial design for the extraction of phenolics, flavonoids and antioxidants recovery from palm kernel by-product. Ind Crop Prod 63:238–248. doi: 10.1016/j.indcrop.2014.09.049 CrossRefGoogle Scholar
  35. Wong Paz JE, Muñiz Márquez DB, Martínez Ávila GCG et al (2014) Ultrasound-assisted extraction of polyphenols from native plants in the Mexican desert. Ultrason Sonochem 22:1–8. doi: 10.1016/j.ultsonch.2014.06.001 Google Scholar
  36. Zeković Z, Vidović S, Vladić J et al (2014) Optimization of subcritical water extraction of antioxidants from Coriandrum sativum seeds by response surface methodology. J Supercrit Fluids 95:560–566. doi: 10.1016/j.supflu.2014.09.004 CrossRefGoogle Scholar
  37. Zhen J, Villani TS, Guo Y et al (2016) Phytochemistry, antioxidant capacity, total phenolic content and anti-inflammatory activity of Hibiscus sabdariffa leaves. Food Chem 190:673–680. doi: 10.1016/j.foodchem.2015.06.006 CrossRefGoogle Scholar
  38. Zinoviadou KG, Galanakis CM, Brnčić M et al (2015) Fruit juice sonication: implications on food safety and physicochemical and nutritional properties. Food Res Int 77:743–752. doi: 10.1016/j.foodres.2015.05.032 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Elixabet Díaz-de-Cerio
    • 1
    • 2
  • Urszula Tylewicz
    • 3
  • Vito Verardo
    • 4
    Email author
  • Alberto Fernández-Gutiérrez
    • 1
    • 2
  • Antonio Segura-Carretero
    • 1
    • 2
  • Santina Romani
    • 3
  1. 1.Department of Analytical Chemistry, Faculty of SciencesUniversity of GranadaGranadaSpain
  2. 2.Functional Food Research and Development CenterHealth Science Technological ParkGranadaSpain
  3. 3.Department of Agricultural and Food SciencesUniversity of BolognaCesenaItaly
  4. 4.Department of Chemistry and Physics, and Research Centre for Agricultural and Food Biotechnology (BITAL), Agrifood Campus of International Excellence, ceiA3University of AlmeríaAlmeríaSpain

Personalised recommendations