Skip to main content

Advertisement

Log in

Methodology Studies on Detection of Aminoglycoside Residues

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

Aminoglycosides are a class of antibiotics commonly used in animal husbandry. If the antibiotics cannot be used legitimately, they would remain in animal foods and environment, even causing damage to human health. The effective detection to these residues is an important part of the protection of human health. In this review, the methodology studies about the detection of aminoglycoside residues are summarized for the related researchers to conveniently understand the progress of this field. These methodology studies involve multi-residue and single residue detection methods. The former includes high-performance liquid chromatography, liquid chromatography–mass spectrometry, and capillary electrophoresis, which are about 40 % of the literature we can access to. Developing the new fluorescent probe is a possible direction for these studies. The latter is about 50 % of the amount of literature, in which most are various immunoassays. The development of highly selective antibodies or aptamers is a possible direction for these assays. Since aminoglycosides have no useful absorption, their derivatization becomes an important part of the sample pretreatment. The presentations related to derivatization are about 30 % of the listed literature, and most of the rest are the purification of the samples. The development of solid-phase extraction adsorbent material which is high selectivity to this class of antibiotics and can be used repeatedly is a possible development direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Attema-de Jonge ME, Bekkers JM, Oudemans-van Straaten HM, Sparidans RW, Franssen EJ (2008) Simple and sensitive method for quantification of low tobramycin concentrations in human plasma using HPLC–MS/MS. J Chromatogr B 862(1):257–262

    Article  CAS  Google Scholar 

  • Babin Y, Fortier S (2007) A high-throughput analytical method for determination of aminoglycosides in veal tissues by liquid chromatography/tandem mass spectrometry with automated cleanup. J AOAC Int 90(5):1418–1426

    CAS  Google Scholar 

  • Baietto L, D’Avolio A, De Rosa FG, Garazzino S, Michelazzo M, Ventimiglia G, Siccardi M, Simiele M, Sciandr M, Di Perri G (2010) Development and validation of a simultaneous extraction procedure for HPLC-MS quantification of daptomycin, amikacin, gentamicin, and rifampicin in human plasma. Anal Bioanal Chem 396(2):791–798

    Article  CAS  Google Scholar 

  • Baxter GA, Ferguson JP, O’Conno MC, Elliott CT (2001) Detection of streptomycin residues in whole milk using an optical immunobiosensor. J Agric Food Chem 49(7):3204–3207

    Article  CAS  Google Scholar 

  • Begg EJ, Barclay ML (1995) Aminoglycosides—50 years on. Br J Clin Pharmacol 39(6):597

    Article  CAS  Google Scholar 

  • Berrada H, Moltó JC, Mañes J, Font G (2010) Determination of aminoglycoside and macrolide antibiotics in meat by pressurized liquid extraction and LC-ESI-MS. J Sep Sci 33(4–5):522–529

    Article  CAS  Google Scholar 

  • Bogialli S, Curin R, Di Corcia A, Laganà A, Mele M, Nazzari M (2005) Simple confirmatory assay for analyzing residues of aminoglycoside antibiotics in bovine milk: hot water extraction followed by liquid chromatography–tandem mass spectrometry. J Chromatogr A 1067(1):93–100

    Article  CAS  Google Scholar 

  • Bohm DA, Stachel CS, Gowik P (2010) Confirmatory method for the determination of streptomycin in apples by LC–MS/MS. Anal Chim Acta 672(1):103–106

    Article  CAS  Google Scholar 

  • Brajanoski G, Hoogmartens J, Allegaert K, Adams E (2008) Determination of amikacin in cerebrospinal fluid by high-performance liquid chromatography with pulsed electrochemical detection. J Chromatogr B 867(1):149–152

    Article  CAS  Google Scholar 

  • Burkin M, Galvidis I (2013) Immunochemical detection of apramycin as a contaminant in tissues of edible animals. Food Control 34(2):408–413

    Article  CAS  Google Scholar 

  • Chen Y, Shang Y, Li X, Wu X, Xiao X (2008a) Development of an enzyme-linked immunoassay for the detection of gentamicin in swine tissues. Food Chem 108(1):304–309

    Article  CAS  Google Scholar 

  • Chen Y, Wang Z, Wang Z, Tang S, Zhu Y, Xiao X (2008b) Rapid enzyme-linked immunosorbent assay and colloidal gold immunoassay for kanamycin and tobramycin in swine tissues. J Agric Food Chem 56(9):2944–2952

    Article  CAS  Google Scholar 

  • Claes PJ (1974) Chromatographic analysis of neomycin isolation and identification of minor components. J Antibiot 27(12):931–942

    Article  CAS  Google Scholar 

  • Dequin PF, Faurisson F, Lemarie E, Delatour F, Marchand S, Valat C, Boissinot E, Gialluly CD, Diot P (2001) Urinary excretion reflects lung deposition of aminoglycoside aerosols in cystic fibrosis. Eur Respir J 18(2):316–322

    Article  CAS  Google Scholar 

  • Ding YS, Mou SF (2005) Application of high performance anion exchange chromatography with pulsed electrochemical detection. Chin J Anal Chem 33:557–561

  • Ding Y, Yu H, Mou S (2004) Optimizing the quadruple-potential waveform for the pulsed amperometric detection of neomycin. J Chromatogr A 1039(1):39–43

    Article  CAS  Google Scholar 

  • Dupay A, Thiex N, Ferris D, Raynie DE (2004) Method development for the determination of neomycin in animal feed. Proc South Dakota Acad Sci South Dakota Acad Sci 83:269

    Google Scholar 

  • Edder P, Cominoli A, Corvi C (1999) Determination of streptomycin residues in food by solid-phase extraction and liquid chromatography with post-column derivatization and fluorometric detection. J Chromatogr A 830(2):345–351

    Article  CAS  Google Scholar 

  • Fang R, Yi LX, Shao YX, Zhang L, Chen GH (2014) On-line preconcentration in capillary electrophoresis for analysis of agrochemical residues. J Liq Chromatogr Relat Technol 37(10):1465–1497

    Article  CAS  Google Scholar 

  • Fennell MA, Uboh CE, Sweeney RW, Soma LR (1995) Gentamicin in tissue and whole milk: an improved method for extraction and cleanup of samples for quantitation on HPLC. J Agric Food Chem 43(7):1849–1852

    Article  CAS  Google Scholar 

  • Gaudin V, Cadieu N, Sanders P (2005) Results of a European proficiency test for the detection of streptomycin/dihydrostreptomycin, gentamicin and neomycin in milk by ELISA and biosensor methods. Anal Chim Acta 529(1):273–283

    Article  CAS  Google Scholar 

  • Ge ZR (2006) Maximum residue limits of agricultural chemicals in foods. volume of food. Standards Press of China, Beijing

    Google Scholar 

  • Gong Q, Ding L, Zhu SH, Jiao YN, Cheng J, Fu SL, Wang LB (2012) Determination of ten aminoglycoside residues in milk and dairy products using high performance liquid chromatography-tandem mass spectrometry. Chin J Chromatogr 30(11):1143–1147

    Article  CAS  Google Scholar 

  • Granja RH, Niño AMM, Zucchetti RA, Niño REM, Patel R, Salerno AG (2009) Determination of streptomycin residues in honey by liquid chromatography–tandem mass spectrometry. Anal Chim Acta 637(1):64–67

    Article  CAS  Google Scholar 

  • Gremilogianni AM, Megoulas NC, Koupparis MA (2010) Hydrophilic interaction vs ion pair liquid chromatography for the determination of streptomycin and dihydrostreptomycin residues in milk based on mass spectrometric detection. J Chromatogr A 1217(43):6646–6651

    Article  CAS  Google Scholar 

  • Gupta VK, Yola ML, Özaltın N, Atar N, Üstündağ Z, Uzun L (2013) Molecular imprinted polypyrrole modified glassy carbon electrode for the determination of tobramycin. Electrochim Acta 112:37–43

    Article  CAS  Google Scholar 

  • Hayashida T (1989) An immunohistochemical method for the study of aminoglycoside ototoxicity in the guinea pig cochlea using decalcified frozen sections. Arch Oto-rhino-laryngol 246(3):161–164

    Article  CAS  Google Scholar 

  • Heering W, Usleber E, Dietrich R, Märtlbauer E (1998) Immunochemical screening for antimicrobial drug residues in commercial honey. Analyst 123(12):2759–2762

    Article  CAS  Google Scholar 

  • Heller DN, Peggins JO, Nochetto CB, Smith ML, Chiesa OA, Moulton K (2005) LC/MS/MS measurement of gentamicin in bovine plasma, urine, milk, and biopsy samples taken from kidneys of standing animals. J Chromatogr B 821(1):22–30

    Article  CAS  Google Scholar 

  • Higgins CE, Kastner RE (1967) Nebramycin, a new broad-spectrum antibiotic complex. II. Description of streptomyces tenebrarius. Antimicrob Agents Chemother 7:324

    CAS  Google Scholar 

  • Hoebus J, Yun LM, Hoogmartens J (1994) An improved gas chromatographic assay for spectinomycin hydrochloride. Chromatographia 39(1–2):71–73

    Article  CAS  Google Scholar 

  • Hormazabal V, Østensvik Ø (2009) Determination of streptomycin and dihydrostreptomycin in milk and meat by liquid chromatography-mass spectrometry. J Liq Chromatogr Relat Technol 32(18):2756–2764

    Article  CAS  Google Scholar 

  • Isoherranen N, Soback S (1999) Chromatographic methods for analysis of aminoglycoside antibiotics. J AOAC Int 82:1017–1045

    CAS  Google Scholar 

  • Isoherranen N, Soback S (2000) Determination of gentamicin after trimethylsilylimidazole and trifluoroacetic anhydride derivatization using gas chromatography and negative ion chemical ionization ion trap mass spectrometry. Analyst 125(9):1573–1576

    Article  CAS  Google Scholar 

  • Ji S, Zhang F, Luo X, Yang B, Jin G, Yan J, Liang X (2013) Synthesis of molecularly imprinted polymer sorbents and application for the determination of aminoglycosides antibiotics in honey. J Chromatogr A 1313:113–118

    Article  CAS  Google Scholar 

  • Jin Y, Jang JW, Han CH, Lee MH (2005) Development of ELISA and immunochromatographic assay for the detection of gentamicin. J Agric Food Chem 53(20):7639–7643

    Article  CAS  Google Scholar 

  • Jin Y, Jang JW, Han CH, Lee MH (2006a) Development of immunoassays for the detection of kanamycin in veterinary fields. J Vet Sci 7(2):111–117

    Article  Google Scholar 

  • Jin Y, Jang JW, Lee MH, Han CH (2006b) Development of ELISA and immunochromatographic assay for the detection of neomycin. Clin Chim Acta 364(1):260–266

    Article  CAS  Google Scholar 

  • Kaale E, Long Y, Fonge HA, Govaerts C, Desmet K, Van Schepdael A, Hoogmartens J (2005) Gentamicin assay in human serum by solid-phase extraction and capillary electrophoresis. Electrophoresis 26(3):640–647

    Article  CAS  Google Scholar 

  • Kabins SA, Nathan C, Cohen S (1976) In vitro comparison of netilmicin, a semisynthetic derivative of sisomicin, and four other aminoglycoside antibiotics. Antimicrob Agents Chemother 10(1):139–145

    Article  CAS  Google Scholar 

  • Kaufmann A, Maden K (2005) Determination of 11 aminoglycosides in meat and liver by liquid chromatography with tandem mass spectrometry. J AOAC Int 88(4):1118–1125

    CAS  Google Scholar 

  • Kawaguchi H (1972) BB-K8, a new semisynthetic aminoglycoside antibiotic. J Antibiot 25:695–708

    Article  CAS  Google Scholar 

  • Kim BH, Lee SC, Lee HJ, Ok JH (2003) Reversed-phase liquid chromatographic method for the analysis of aminoglycoside antibiotics using pre-column derivatization with phenylisocyanate. Biomed Chromatogr 17(6):396–403

    Article  CAS  Google Scholar 

  • Kolosova AY, Blintsov AN, Samsonova JV, Egorov AM (1998) Development of an enzyme-linked immunosorbent assay for gentamicin in human blood serum. Fresenius J Anal Chem 361(3):329–330

    Article  CAS  Google Scholar 

  • Lecároz C, Campanero MA, Gamazo C, Blanco-Prieto MJ (2006) Determination of gentamicin in different matrices by a new sensitive high-performance liquid chromatography-mass spectrometric method. J Antimicrob Chemother 58(3):557–563

    Article  Google Scholar 

  • Li JJ, Yang M, Huo DQ, Hou CJ, Li XL, Wang GM, Feng D (2013) Molecularly imprinted polymers on the surface of silica microspheres via sol–gel method for the selective extraction of streptomycin in aqueous samples. J Sep Sci 36(6):1142–1148

    Article  CAS  Google Scholar 

  • Liu Z, Sha Y, Huang T, Yang B, Duan GL (2005) High-performance liquid chromatographic determination of vertilmicin in rat plasma using sensitive fluorometric derivatization. J Chromatogr B 828(1):2–8

    Article  CAS  Google Scholar 

  • Long YH, Hernandez M, Kaale E, Van Schepdael A, Roets E, Borrull F, Hoogmartens J (2003) Determination of kanamycin in serum by solid-phase extraction, pre-capillary derivatization and capillary electrophoresis. J Chromatogr B 784(2):255–264

    Article  CAS  Google Scholar 

  • Loomans EE, van Wiltenburg J, Koets M, van Amerongen A (2003) Neamin as an immunogen for the development of a generic ELISA detecting gentamicin, kanamycin, and neomycin in milk. J Agric Food Chem 51(3):587–593

    Article  CAS  Google Scholar 

  • Martos PA, Jayasundara F, Dolbeer J, Jin W, Spilsbury L, Mitchell M, Varilla C, Shurmer B (2010) Multiclass, multiresidue drug analysis, including aminoglycosides, in animal tissue using liquid chromatography coupled to tandem mass spectrometry. J Agric Food Chem 58(10):5932–5944

    Article  CAS  Google Scholar 

  • Medina MB (2004) Development of a fluorescent latex immunoassay for detection of a spectinomycin antibiotic. J Agric Food Chem 52(11):3231–3236

    Article  CAS  Google Scholar 

  • Mineo H, Kaneko S, Koizumi I, Asida K, Akahori F (1992) An analytical study of antibacterial residues in meat: the simultaneous determination of 23 antibiotics and 13 drugs using gas chromatography. Vet Hum Toxicol 34(5):393–397

    CAS  Google Scholar 

  • Ministry of Agriculture of the People’s Republic of China (2008) Announcement No. 1025 of the Ministry of Agriculture of the People’s Republic of China. http://www.moa.gov.cn/zwllm/tzgg/gg/200805/t20080509_1036076.htm

  • Morovján G, Csokan PP, Nemeth-Konda L (1998) HPLC determination of colistin and aminoglycoside antibiotics in feeds by post-column derivatization and fluorescence detection. Chromatographia 48(1–2):32–36

    Article  Google Scholar 

  • Oertel R, Neumeister V, Kirch W (2004) Hydrophilic interaction chromatography combined with tandem-mass spectrometry to determine six aminoglycosides in serum. J Chromatogr A 1058(1):197–201

    Article  CAS  Google Scholar 

  • Oka H, Nakazawa H, Ken-Ichi H, MacNeil JD (1995) Chemical analysis for antibiotics used in agriculture. AOAC international

  • Pechere JC, Dugal R (1979) Clinical pharmacokinetics of aminoglycoside antibiotics. Clin Pharmacokinet 4(3):170–199

    Article  CAS  Google Scholar 

  • Posyniak A, Zmudzki J, Niedzielska J (2001) Sample preparation for residue determination of gentamicin and neomycin by liquid chromatography. J Chromatogr A 914(1):59–66

    Article  CAS  Google Scholar 

  • Preu M, Guyot D, Petz M (1998) Development of a gas chromatography–mass spectrometry method for the analysis of aminoglycoside antibiotics using experimental design for the optimization of the derivatisation reactions. J Chromatogr A 818(1):95–108

    Article  CAS  Google Scholar 

  • Pyun CW, Abd El-Aty AM, Hashim MMM, Shim JH, Lee SK, Choi KD, Park KH, Shin HC, Lee C (2008) Monitoring of streptomycin and dihydrostreptomycin residual levels in porcine meat press juice and muscle via solid-phase fluorescence immunoassay and confirmatory analysis by liquid chromatography after post-column derivatization. Biomed Chromatogr 22(3):254–259

    Article  CAS  Google Scholar 

  • Sánchez-Martínez ML, Aguilar-Caballos MP, Gómez-Hens A (2009) Long-wavelength homogeneous enzyme immunoassay for the determination of amikacin in water samples. Talanta 78(1):305–309

    Article  Google Scholar 

  • Schatz A, Bugle E, Waksman SA (1944) Streptomycin, a substance exhibiting antibiotic activity against gram-positive and gram-negative bacteria. Exp Biol Med 55(1):66–69

    Article  CAS  Google Scholar 

  • Serrano JM, Silva M (2006a) Rapid and sensitive determination of aminoglycoside antibiotics in water samples using a strong cation-exchange chromatography non-derivatisation method with chemiluminescence detection. J Chromatogr A 1117(2):176–183

    Article  CAS  Google Scholar 

  • Serrano JM, Silva M (2006b) Trace analysis of aminoglycoside antibiotics in bovine milk by MEKC with LIF detection. Electrophoresis 27(23):4703–4710

    Article  CAS  Google Scholar 

  • Stead DA (2000) Current methodologies for the analysis of aminoglycosides. J Chromatogr B 747(1):69–93

    Article  CAS  Google Scholar 

  • Trade-Related Technical Measure of China (2014) Query of Japan positive list.. http://www.tbtsps.cn/foodsafe/xlbz/Pages/japan.aspx

  • Trade-Related Technical Measure of China (2014) Query of veterinary residues. http://www.tbtsps.cn/page/tradez/Foodlimit.action?type=2&country=1017

  • Umezawa H, Ueda M, Maeda K (1957) Production and isolation of a new antibiotic: kanamycin. J Antibiot 10(5):181

    CAS  Google Scholar 

  • van Bruijnsvoort M, Ottink SJ, Jonker KM, de Boer E (2004) Determination of streptomycin and dihydrostreptomycin in milk and honey by liquid chromatography with tandem mass spectrometry. J Chromatogr A 1058(1):137–142

    Article  Google Scholar 

  • Varriale A, Staiano M, Iozzino L, Severino L, Anastasio A, Cortesi ML, D’Auria S (2009) FCS-based sensing for the detection of ochratoxin and neomycin in food. Protein Pept Lett 16(12):1425–1428

    Article  CAS  Google Scholar 

  • Vinas P, Balsalobre N, Hernández-Córdoba M (2007) Liquid chromatography on an amide stationary phase with post-column derivatization and fluorimetric detection for the determination of streptomycin and dihydrostreptomycin in foods. Talanta 72(2):808–812

    Article  CAS  Google Scholar 

  • Vučičevič-Prčetič K, Cservenák R, Radulović N (2011) Determination of neomycin and oxytetracycline in the presence of their impurities in veterinary dosage forms by high-performance liquid chromatography/tandem mass spectrometry. J AOAC Int 94(3):750–757

    Google Scholar 

  • Waksman SA, Lechevalier HA (1949) Neomycin, a new antibiotic active against streptomycin-resistant bacteria, including tuberculosis organisms. Science 109(2830):305–307

    Article  CAS  Google Scholar 

  • Walsh F, Ingenfeld A, Zampicolli M, Hilber-Bodmer M, Frey JE, Duffy B (2011) Real-time PCR methods for quantitative monitoring of streptomycin and tetracycline resistance genes in agricultural ecosystems. J Microbiol Methods 86(2):150–155

    Article  CAS  Google Scholar 

  • Wang S, Xu B, Zhang Y, He JX (2009) Development of enzyme-linked immunosorbent assay (ELISA) for the detection of neomycin residues in pig muscle, chicken muscle, egg, fish, milk and kidney. Meat Sci 82(1):53–58

    Article  CAS  Google Scholar 

  • Wang YF, Wang DN, Zou MQ, Jin Y, Yun CL, Gao XW (2011) Application of suspension array for simultaneous detection of antibiotic residues in raw milk. Anal Lett 44(16):2711–2720

    Article  CAS  Google Scholar 

  • Wang YF, Zou MQ, Han Y, Zhang F, Li JF, Zhu XY (2013) Analysis of the kanamycin in raw milk using the suspension array. J Chem. doi:10.1155/2013/784543

    Google Scholar 

  • Watanabe H, Satake A, Kido Y, Tsuji A (2002) Monoclonal-based enzyme-linked immunosorbent assay and immunochromatographic rapid assay for dihydrostreptomycin in milk. Anal Chim Acta 472(1):45–53

    Article  CAS  Google Scholar 

  • Weinstein MJ, Luedemann GM, Oden EM, Wagman GH, Rosselet JP, Marquez JA, Coniglio CT, Charney W, Herzog HL, Black J (1963) Gentamicin, 1 a new antibiotic complex from micromonospora. J Med Chem 6(4):463–464

    Article  CAS  Google Scholar 

  • World Health Organization (1995) 43th Report of the Joint FAO/WHO Expert Committee on Food Additives. Tech. Report Series, 855, Geneva, Switzerland

  • Wu JX, Zhang SE, Zhou XP (2010) Monoclonal antibody-based ELISA and colloidal gold-based immunochromatographic assay for streptomycin residue detection in milk and swine urine. J Zhejiang Univ Sci B 11(1):52–60

    Article  CAS  Google Scholar 

  • Yang WC, Yu AM, Chen HY (2001) Applications of a copper microparticle-modified carbon fiber microdisk array electrode for the simultaneous determination of aminoglycoside antibiotics by capillary electrophoresis. J Chromatogr A 905(1):309–318

    Article  CAS  Google Scholar 

  • Yu CZ, He YZ, Li L, Han F, Gan WE (2008) Capillary zone electrophoresis analysis for kanamycins in animal tissue with post-column derivatization and laser-induced fluorescence. Chin J Anal Chem 36(11):1551–1554

    CAS  Google Scholar 

  • Yu CZ, He YZ, Fu GN, Xie HY, Gan WE (2009) Determination of kanamycin a, amikacin and tobramycin residues in milk by capillary zone electrophoresis with post-column derivatization and laser-induced fluorescence detection. J Chromatogr B 877(3):333–338

    Article  CAS  Google Scholar 

  • Zawilla NH, Diana J, Hoogmartens J, Adams E (2006) Analysis of neomycin using an improved liquid chromatographic method combined with pulsed electrochemical detection. J Chromatogr B 833(2):191–198

    Article  CAS  Google Scholar 

  • Zhou YX, Yang WJ, Zhang LY, Wang ZY (2007) Determination of kanamycin A in animal feeds by solid phase extraction and high performance liquid chromatography with pre-column derivatization and fluorescence detection. J Liq Chromatogr Relat Technol 30(11):1603–1615

    Article  CAS  Google Scholar 

  • Zhu WX, Yang JZ, Wei W, Liu YF, Zhang SS (2008) Simultaneous determination of 13 aminoglycoside residues in foods of animal origin by liquid chromatography–electrospray ionization tandem mass spectrometry with two consecutive solid-phase extraction steps. J Chromatogr A 1207(1):29–37

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by Specialized Research Fund for the Doctoral Program of Higher Education, Ministry of Education, China, (Grant No. 20093227110010) and The Science Fund of Jiangsu University (Grant No. 08JDG001).

Conflict of Interest

Guan-Hua Chen declares that he has no any financial/commercial conflicts of interest in this manuscript. Yi-Fang Tian declares that she has no any financial/commercial conflicts of interest in this manuscript. Li-Hui Guo declares that he has no any financial/commercial conflicts of interest in this manuscript. Xin Guo declares that she has no any financial/commercial conflicts of interest in this manuscript. Xiao-Yun Mei declares that she has no any financial/commercial conflicts of interest in this manuscript. This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan-Hua Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, YF., Chen, GH., Guo, LH. et al. Methodology Studies on Detection of Aminoglycoside Residues. Food Anal. Methods 8, 1842–1857 (2015). https://doi.org/10.1007/s12161-014-0067-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-014-0067-5

Keywords

Navigation