Skip to main content
Log in

Feasibility of Ultrafast Intermolecular Single-Quantum Coherence Spectroscopy in Analysis of Viscous-Liquid Foods

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

A newly developed nuclear magnetic resonance (NMR) technique, ultrafast intermolecular single-quantum coherence (UF iSQC) spectroscopy, demonstrated its potentials to obtain spectra of viscous-liquid samples in deuterium-free environment. UF iSQC not only inherits the advantage of ultrafast acquisition efficiency of spatial encoding but also keeps the intrinsic merit of immunity of iSQC in inhomogeneous magnetic field. In the present study, UF iSQC spectroscopy is used for the direct analysis of three typical viscous-liquid foods, namely, honey, yogurt, and tomato sauce, and its feasibility is verified by ultrafast acquisition of NMR spectra of these viscous-liquid foods. UF iSQC spectroscopy presents an advantageous alternative to directly detect most components of these samples in favorable spectral information within 1 min, thus saving the trouble of complicated sample pretreatments and tedious shimming processes. Due to the immunity to field inhomogeneity, the UF iSQC technique can be a proper supplement to dilution, extraction NMR, and magic angle spinning. In addition, in comparison with the conventional iSQC method, the acquisition time of the proposed method is greatly reduced due to the introduction of the spatial encoding technique. The lower sensitivity and resolution of UF iSOC spectra than those of dilutions acquired by the conventional NMR method could be improved by some newly developed strategies. Results obtained here demonstrate the potential application of the UF iSQC spectroscopy in the quality control of food.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alberola C, Blumich B, Emeis D, Wittern KP (2006) Phase transitions of monoglyceride emulsifier systems and pearlescent effects in cosmetic creams studied by 13C NMR spectroscopy and DSC. Colloids Surf A Physicochem Eng Asp 290:247–255

    Article  CAS  Google Scholar 

  • Balla DZ, Faber C (2004) Solvent suppression in liquid state NMR with selective intermolecular zero-quantum coherences. Chem Phys Lett 393:464–469

    Article  CAS  Google Scholar 

  • Balla DZ, Faber C (2008) Localized intermolecular zero-quantum coherence spectroscopy in vivo. Concepts Magn Reson Part A 32A:117–133

    Article  CAS  Google Scholar 

  • Bertelli D, Lolli M, Papotti G, Bortolotti L, Serra G, Plessi M (2010) Detection of honey adulteration by sugar syrups using one-dimensional and two-dimensional high-resolution nuclear magnetic resonance. J Agric Food Chem 58:8495–8501

    Article  CAS  Google Scholar 

  • Bogdanov S (1997) Nature and origin of the antibacterial substances in honey. LWT Food Sci Technol 30:748–753

    Article  CAS  Google Scholar 

  • Bouchard LS, Rizi RR, Warren WS (2002) Magnetization structure contrast based on intermolecular multiple-quantum coherences. Magn Reson Med 48:973–979

    Article  Google Scholar 

  • Branca RT, Jenista ER, Warren WS (2011) Inhomogeneity-free heteronuclear iMQC. J Magn Reson 209:347–351

    Article  CAS  Google Scholar 

  • Branca RT, Warren WS (2011) In vivo brown adipose tissue detection and characterization using water-lipid intermolecular zero-quantum coherences. Magn Reson Med 65:313–319

    Article  CAS  Google Scholar 

  • Cai HH, Chen YS, Cui XH, Cai SH, Chen Z (2014) High-resolution 1H NMR spectroscopy of fish muscle, eggs and small whole fish via hadamard-encoded intermolecular multiple-quantum coherence. PLoS ONE 9:e86422

    Article  Google Scholar 

  • Cairncross SE, Sjostrom LB (1948) What glutamate does in food. Food ind 20:982

    CAS  Google Scholar 

  • Chen YS, Cai SH, Cai CB, Cui XH, Chen Z (2012) High-resolution NMR spectroscopy in inhomogeneous fields via Hadamard-encoded intermolecular double-quantum coherences. NMR Biomed 25:1088–1094

    Article  CAS  Google Scholar 

  • Chen Z, Chen ZW, Zhong JH (2002) Observation and characterization of intermolecular homonuclear single-quantum coherences in liquid nuclear magnetic resonance. J Chem Phys 117:8426–8435

    Article  CAS  Google Scholar 

  • Consonni R, Cagliani LR (2008) Geographical characterization of polyfloral and acacia honeys by nuclear magnetic resonance and chemometrics. J Agric Food Chem 56:6873–6880

    Article  CAS  Google Scholar 

  • Consonni R, Cagliani LR, Stocchero M, Porretta S (2009) Triple concentrated tomato paste: discrimination between Italian and Chinese products. J Agric Food Chem 57:4506–4513

    Article  CAS  Google Scholar 

  • del Campo G, Berregi I, Caracena R, Santos JI (2006) Quantitative analysis of malic and citric acids in fruit juices using proton nuclear magnetic resonance spectroscopy. Anal Chim Acta 556:462–468

    Article  Google Scholar 

  • Ernst RR, Bodenhausen G, Wokaun A, Redfield AG (1989) Principles of nuclear magnetic resonance in one and two dimensions. Phys Today 42:75

    Article  Google Scholar 

  • Giraudeau P, Akoka S (2008) Resolution and sensitivity aspects of ultrafast J-resolved 2D NMR spectra. J Magn Reson 190:339–345

    Article  CAS  Google Scholar 

  • Herrera A, Fernandez E, Gutierrez EM, Martinez-Alvarez R, Molero D, Pardo ZD, Saez E (2010) 2D Ultrafast HMBC: a valuable tool for monitoring organic reactions. Org Lett 12:144–147

    Article  CAS  Google Scholar 

  • Heude C, Lemasson E, Elbayed K, Piotto M (2014) Rapid assessment of fish freshness and quality by 1H HR-MAS NMR spectroscopy. Food Anal Meth:1–9

  • Hu FY, Furihata K, Ito-Ishida M, Kaminogawa S, Tanokura M (2004) Nondestructive observation of bovine milk by NMR spectroscopy: analysis of existing states of compounds and detection of new compounds. J Agric Food Chem 52:4969–4974

    Article  CAS  Google Scholar 

  • Huang YQ, Cai SH, Chen X, Chen Z (2010) Intermolecular single-quantum coherence sequences for high-resolution NMR spectra in inhomogeneous fields. J Magn Reson 203:100–107

    Article  CAS  Google Scholar 

  • Hwang TL, Shaka AJ (1995) Water suppression that works. Excitation sculpting using arbitrary wave-forms and pulsed-field gradients. J Magn Reson 112:275–279

    Article  CAS  Google Scholar 

  • Jenista ER, Branca RT, Warren WS (2009) Hyperpolarized carbon-carbon intermolecular multiple quantum coherences. J Magn Reson 196:74–77

    Article  CAS  Google Scholar 

  • Jiang B, Liu HL, Liu ML, Ye CH, Mao X (2008) Double quantum CRAZED NMR signal in inhomogeneous fields. Chem Phys 351:33–36

    Article  CAS  Google Scholar 

  • Khachik F, Steck A, Niggli UA, Pfander H (1998) Partial synthesis and structural elucidation of the oxidative metabolites of lycopene identified in tomato paste, tomato juice, and human serum. J Agric Food Chem 46:4874–4884

    Article  CAS  Google Scholar 

  • Kumar V, Dwivedi DK, Jagannathan NR (2014) High-resolution NMR spectroscopy of human body fluids and tissues in relation to prostate cancer. NMR Biomed 27:80–89

    Article  CAS  Google Scholar 

  • Lachenmeier DW, Humpfer E, Fang F, Schutz B, Dvortsak P, Sproll C, Spraul M (2009) NMR-spectroscopy for nontargeted screening and simultaneous quantification of health-relevant compounds in foods: The example of melamine. J Agric Food Chem 57:7194–7199

    Article  CAS  Google Scholar 

  • Lee MK, Gal M, Frydman L, Varani G (2010) Real-time multidimensional NMR follows RNA folding with second resolution. Proc Natl Acad Sci U S A 107:9192–9197

    Article  CAS  Google Scholar 

  • Lee S, Richter W, Vathyam S, Warren WS (1996) Quantum treatment of the effects of dipole-dipole interactions in liquid nuclear magnetic resonance. J Chem Phys 105:874–900

    Article  CAS  Google Scholar 

  • Lin YL, Cai SH, Zhang ZY, Chen Z (2012) High-resolution intermolcecular single-quantum coherence spectroscopy in inhomogeneous fields within single scan. Paper presented at the 2012 Chinsese National Magnetic Resonance Conference, Xiamen, China, October

  • Liu M, Mao X, Ye C, Huang H, Nicholson JK, Lindon JC (1998) Improved WATERGATE pulse sequences for solvent suppression in NMR spectroscopy. J Magn Reson 132:125–129

    Article  CAS  Google Scholar 

  • Malmendal A, Amoresano C, Trotta R, Lauri I, De Tito S, Novellino E, Randazzo A (2011) NMR spectrometers as “magnetic tongues”: prediction of sensory descriptors in canned tomatoes. J Agric Food Chem 59:10831–10838

    Article  CAS  Google Scholar 

  • Miao YM, Cross TA, Fu RQ (2013) Identifying inter-residue resonances in crowded 2D 13C-13C chemical shift correlation spectra of membrane proteins by solid-state MAS NMR difference spectroscopy. J Biomol NMR 56:265–273

    Article  CAS  Google Scholar 

  • Miglietta ML, Lamanna R (2006) 1H HR-MAS NMR of carotenoids in aqueous samples and raw vegetables. Magn Reson Chem 44:675–685

    Article  CAS  Google Scholar 

  • Okada T et al (2000) Effect of the defatted rice germ enriched with GABA for sleeplessness, depression, autonomic disorder by oral administration. J Jpn Soc Food Sci Technol-Nippon Shokuhin Kagaku Kogaku Kaishi 47:596–603

    Article  CAS  Google Scholar 

  • Piotto M, Saudek V, Sklenar V (1992) Gadient-tailored excitation for single-quantum NMR-spectroscopy of aqueous-solutions. J Biomol NMR 2:661–665

    Article  CAS  Google Scholar 

  • Queiroz LHK, Giraudeau P, dos Santos FAB, de Oliveira KT, Ferreira AG (2012) Real-time mechanistic monitoring of an acetal hydrolysis using ultrafast 2D NMR. Magn Reson Chem 50:496–501

    Article  CAS  Google Scholar 

  • Rouge P, Cornu A, Biesse-Martin A-S, Lyan B, Rochut N, Graulet B (2013) Identification of quinoline, carboline and glycinamide compounds in cow milk using HRMS and NMR. Food Chem 141:1888–1894

    Article  CAS  Google Scholar 

  • Sanchez EM, Jose M, Lopez F, Sanchez I, Martinez M (2010) Study of the suitability of HRMAS NMR for metabolic profiling of tomatoes: application to tissue differentiation and fruit ripening. Food Chem 122:877–887

    Article  Google Scholar 

  • Sandusky P, Raftery D (2005) Use of selective TOCSY NMR experiments for quantifying minor components in complex mixtures: application to the metabonomics of amino acids in honey. Anal Chem 77:2455–2463

    Article  CAS  Google Scholar 

  • Sidhu OP, Annarao S, Chatterjee S, Tuli R, Roy R, Khetrapal CL (2011) Metabolic alterations of Withania somnifera (L.) dunal fruits at different developmental stages by NMR spectroscopy. Phytochem Anal 22:492–502

    Article  CAS  Google Scholar 

  • Sklenar V, Piotto M, Leppik R, Saudek V (1993) Gradient-tailored water suppression for 1H-15N HSQC experiments optimized to retain full sensitivity. J Magn Reson 102:241–245

    Article  CAS  Google Scholar 

  • Stefanova R, Vasilev NV, Vassilev NG (2011) 1H-NMR spectroscopy as an alternative tool for the detection of gamma-ray irradiated meat. Food Anal Methods 4:399–403

    Article  Google Scholar 

  • Synytsya A, Blafkova P, Copikova J, Spevacek J, Uher M (2008) Conjugation of kojic acid with chitosan. Carbohydr Polym 72:21–31

    Article  CAS  Google Scholar 

  • Tal A, Shapira B, Frydman L (2009) Single-scan 2D Hadamard NMR spectroscopy. Angew Chem Int Ed 48:2732–2736

    Article  CAS  Google Scholar 

  • Warren WS, Richter W, Andreotti AH, Farmer BT (1993) Generation of impossible cross-peaks between bulk water and biomolecules in solution NMR. Science 262:2005–2009

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the NNSF of China under Grants 21327001, 21203155, and 11204256, and the Prior Research Field Fund for the Doctoral Program of Higher Education of China under Grant 20120121130003.

Conflict of Interest

The authors have no conflict of interest to declare.

Compliance with Ethics Requirements

This article does not contain any studies on human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-Hong Cui or Zhong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, HH., Chen, H., Lin, YL. et al. Feasibility of Ultrafast Intermolecular Single-Quantum Coherence Spectroscopy in Analysis of Viscous-Liquid Foods. Food Anal. Methods 8, 1682–1690 (2015). https://doi.org/10.1007/s12161-014-0046-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-014-0046-x

Keywords

Navigation