Skip to main content
Log in

Xylooligosaccharides from Pretreated Rice Bran Produced by Immobilized Xylanase

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Xylooligosaccharides (XOS) are potential prebiotic ingredients for food industries, mainly obtained after xylan hydrolysis by endoxylanases. Enzyme immobilization offers opportunities for recovery and reuse, while also enhancing its physical and chemical characteristics, such as stability and catalytic efficiency. This work aimed to immobilize the SM2 xylanase derived from the xynA gene from Orpinomyces sp. PC-2 and to evaluate its potential for XOS production. For this, SM2 xylanase was immobilized using the cross-linking methodology. The free and immobilized enzymes were characterized regarding the effect of pH, temperature, and thermostability. The cross-linked enzyme aggregate was evaluated for reuse and storage conditions and used for xylooligosaccharide production. Both free and immobilized SM2 xylanase showed maximal activity at 60 °C. The immobilized enzyme was more active at acidic and neutral conditions, and the free enzyme showed greater activity at basic conditions. The half-life of the free and immobilized xylanase was 30 and 216 h, respectively. In reuse tests, enzymatic activity increased with each cycle, and there was no statistical difference in the activity of SM2 xylanase aggregate stored at 4 and 25 °C. After saccharification, xylobiose (0.895 g/L), xylotriose (0.489 g/L), and xylohexose (0.809 g/L) were detected. As a result, immobilization enhanced thermostability, shifted the pH of maximum activity to 5, facilitated reuse, and eliminated the need for refrigerated packaging. Finally, the xylooligosaccharides produced by the SM2 xylanase are known for their prebiotic role, providing potential application of the immobilized enzyme in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Santibáñez L, Henríquez C, Corro-Tejeda R et al (2021) Xylooligosaccharides from lignocellulosic biomass: a comprehensive review. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.117118

    Article  PubMed  Google Scholar 

  2. Wang G, Huang X, Ng TB et al (2014) High phylogenetic diversity of glycosyl hydrolase family 10 and 11 xylanases in the sediment of Lake Dabusu in China. PLoS ONE. https://doi.org/10.1371/journal.pone.0112798

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mano MCR, Neri-Numa IA, da Silva JB et al (2018) Oligosaccharide biotechnology: an approach of prebiotic revolution on the industry. Appl Microbiol Biotechnol. https://doi.org/10.1007/s00253-017-8564-2

    Article  PubMed  Google Scholar 

  4. Jain I, Kumar V, Satyanarayana T (2015) Xylooligosaccharides: an economical prebiotic from agroresidues and their health benefits. Indian J Exp Biol 53:131–142

    PubMed  Google Scholar 

  5. Markowiak P, Ślizewska K (2017) Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. https://doi.org/10.3390/nu909102

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hutkins RW, Krumbeck JA, Bindels LB et al (2016) Prebiotics: why definitions matter. Curr Opin Biotechnol. https://doi.org/10.1016/J.COPBIO.2015.09.001

    Article  PubMed  Google Scholar 

  7. Gibson GR, Hutkins R, Sanders ME et al (2017) (2017) Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14:491–502. https://doi.org/10.1038/nrgastro.2017.75

    Article  PubMed  Google Scholar 

  8. Valladares-Diestra KK, de Souza Vandenberghe LP, Vieira S et al (2023) The potential of xylooligosaccharides as prebiotics and their sustainable production from agro-industrial by-products. Foods. https://doi.org/10.3390/FOODS12142681

  9. Wang J, Sun B, Cao Y et al (2009) Enzymatic preparation of wheat bran xylooligosaccharides and their stability during pasteurization and autoclave sterilization at low pH. Carbohydr Polym 77:816–821. https://doi.org/10.1016/j.carbpol.2009.03.005

    Article  CAS  Google Scholar 

  10. Di DC, Tsai ML, Nargotra P et al (2023) Bioprocess development for the production of xylooligosaccharide prebiotics from agro-industrial lignocellulosic waste. Heliyon 9:e18316. https://doi.org/10.1016/j.heliyon.2023.e18316

    Article  CAS  Google Scholar 

  11. Poletto P, Pereira GN, Monteiro CRM et al (2020) Xylooligosaccharides: transforming the lignocellulosic biomasses into valuable 5-carbon sugar prebiotics. Process Biochem 91:352–363. https://doi.org/10.1016/j.procbio.2020.01.005

    Article  CAS  Google Scholar 

  12. de Freitas C, Carmona E, Brienzo M (2019) Xylooligosaccharides production process from lignocellulosic biomass and bioactive effects. Bioactive Carbohydrates Dietary Fibre 18:100184. https://doi.org/10.1016/j.bcdf.2019.100184

    Article  CAS  Google Scholar 

  13. Xue JL, Zhao S, Liang RM et al (2016) A biotechnological process efficiently co-produces two high value-added products, glucose and xylooligosaccharides, from sugarcane bagasse. Bioresour Technol 204:130–138. https://doi.org/10.1016/j.biortech.2015.12.082

    Article  CAS  PubMed  Google Scholar 

  14. Chen Y, Xie Y, Ajuwon KM et al (2021) Xylo-oligosaccharides, preparation and application to human and animal health: a review. Front Nutr. https://doi.org/10.3389/fnut.2021.731930

    Article  PubMed  PubMed Central  Google Scholar 

  15. Cunha CC de QB, Gama AR, Cintra LC, et al (2018) Improvement of bread making quality by supplementation with a recombinant xylanase produced by Pichia pastoris. PLoS One.https://doi.org/10.1371/journal.pone.0192996

  16. Li XL, Chen H, Ljungdahl LG (1997) Monocentric and polycentric anaerobic fungi produce structurally related cellulases and xylanases. Appl Environ Microbiol 63:628–635. https://doi.org/10.1128/aem.63.2.628-635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li XL, Ljungdahl LG, Chen H (1996) Orpinomyces xylanase proteins and coding sequences. Patent Number CA2221270A1, Canada. https://patents.google.com/patent/CA2221270A1/en. Accessed 16 Apr 2024

  18. Trevizano LM, Ventorim RZ, de Rezende ST et al (2012) Thermostability improvement of Orpinomyces sp. xylanase by directed evolution. J Mol Catal B Enzym 81:12–18. https://doi.org/10.1016/j.molcatb.2012.04.021

    Article  CAS  Google Scholar 

  19. Ventorim RZ, de Oliveira Mendes TA, Trevizano LM et al (2018) Impact of the removal of N-terminal non-structured amino acids on activity and stability of xylanases from Orpinomyces sp. PC-2. Int J Biol Macromol 106:312–319. https://doi.org/10.1016/j.ijbiomac.2017.08.015

    Article  CAS  PubMed  Google Scholar 

  20. Passarinho ATP, Ventorim RZ, Maitan-Alfenas GP et al (2018) Engineered GH11 xylanases from Orpinomyces sp. PC-2 improve techno-functional properties of bread dough. J Sci Food Agric 99:741–747. https://doi.org/10.1002/jsfa.9242

    Article  CAS  PubMed  Google Scholar 

  21. Almeida L, Machado SG, Rodrigues R, et al (2024) Xylooligosaccharides from agro-industrial wastes as prebiotics. Elsevier Inc. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4644110. Accessed 10 Apr 2024

  22. Maghraby YR, El-Shabasy RM, Ibrahim AH, Azzazy HMES (2023) Enzyme immobilization technologies and industrial applications. ACS Omega 8:5184. https://doi.org/10.1021/acsomega.2c07560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mohidem NA, Mohamad M, Rashid MU et al (2023) Recent advances in enzyme immobilisation strategies: an overview of techniques and composite carriers. J Compos Sci 7:488. https://doi.org/10.3390/JCS7120488

    Article  CAS  Google Scholar 

  24. Hassan ME, Yang Q, Xiao Z et al (2019) Impact of immobilization technology in industrial and pharmaceutical applications. 3 Biotech 9:440. https://doi.org/10.1007/S13205-019-1969-0

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zang YY, Yang S, Xu YQ et al (2020) Carrier-free immobilization of rutin degrading enzyme extracted from Fusarium spp. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.00470

    Article  PubMed  PubMed Central  Google Scholar 

  26. Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 3:426–428. https://doi.org/10.1021/ac60147a030

    Article  Google Scholar 

  27. da Luz MM, de Souza Àzar RL, Guimarães VM et al (2022) Purification of xylanase from Kretzschmaria zonata with potential interest in the production of xylooligosaccharides. J Food Process Preserv 46:e16910. https://doi.org/10.1111/JFPP.16910

    Article  Google Scholar 

  28. Milessi TSS, Kopp W, Rojas MJ et al (2016) Immobilization and stabilization of an endoxylanase from Bacillus subtilis (XynA) for xylooligosaccharides (XOs) production. Catal Today 259:130–139. https://doi.org/10.1016/J.CATTOD.2015.05.032

    Article  CAS  Google Scholar 

  29. Trono D (2019) Chapter 13 - Recombinant enzymes in the food and pharmaceutical industries. In: Singh RS, Singhania RR, Pandey A, Larroche C (eds) Advances in enzyme technology. Elsevier, pp 349–387. https://doi.org/10.1016/B978-0-444-64114-4.00013-3

  30. Sar T, Harirchi S, Ramezani M et al (2022) Potential utilization of dairy industries by-products and wastes through microbial processes: a critical review. Sci Total Environ 810:152253. https://doi.org/10.1016/j.scitotenv.2021.152253

    Article  CAS  PubMed  Google Scholar 

  31. Ademakinwa AN (2021) A heat-resistant intracellular laccase immobilized via cross-linked enzyme aggregate preparation: characterization, application in bisphenol a removal and phytotoxicity evaluation. J Hazard Mater 419:126480. https://doi.org/10.1016/j.jhazmat.2021.126480

    Article  CAS  PubMed  Google Scholar 

  32. Hero JS, Romero CM, Pisa JH et al (2018) Designing cross-linked xylanase aggregates for bioconversion of agroindustrial waste biomass towards potential production of nutraceuticals. Int J Biol Macromol 111:229–236. https://doi.org/10.1016/j.ijbiomac.2017.12.166

    Article  CAS  PubMed  Google Scholar 

  33. Sheldon RA (2011) Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl Microbiol Biotechnol 92:467–477. https://doi.org/10.1007/s00253-011-3554-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sinirlioglu ZA, Sinirlioglu D, Akbas F (2013) Preparation and characterization of stable cross-linked enzyme aggregates of novel laccase enzyme from Shewanella putrefaciens and using malachite green decolorization. Bioresour Technol 146:807–811. https://doi.org/10.1016/j.biortech.2013.08.032

    Article  CAS  PubMed  Google Scholar 

  35. Verma R, Kumar A, Kumar S (2019) Synthesis and characterization of cross-linked enzyme aggregates (CLEAs) of thermostable xylanase from Geobacillus thermodenitrificans X1. Process Biochem 80:72–79. https://doi.org/10.1016/j.procbio.2019.01.019

    Article  CAS  Google Scholar 

  36. Kumar S, Haq I, Prakash J, Raj A (2017) Improved enzyme properties upon glutaraldehyde cross-linking of alginate entrapped xylanase from Bacillus licheniformis. Int J Biol Macromol 98:24–33. https://doi.org/10.1016/j.ijbiomac.2017.01.104

    Article  CAS  PubMed  Google Scholar 

  37. Talekar S, Pandharbale A, Ladole M et al (2013) Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-CLEAs): a tri-enzyme biocatalyst with one pot starch hydrolytic activity. Bioresour Technol 147:269–275. https://doi.org/10.1016/j.biortech.2013.08.035

    Article  CAS  PubMed  Google Scholar 

  38. Bhushan B, Pal A, Jain V (2015) Improved enzyme catalytic characteristics upon glutaraldehyde cross-linking of alginate entrapped xylanase isolated from Aspergillus flavus MTCC 9390. Enzyme Res 2015:1–9. https://doi.org/10.1155/2015/210784

    Article  CAS  Google Scholar 

  39. Kumar L, Nagar S, Mittal A et al (2014) Immobilization of xylanase purified from Bacillus pumilus VLK-1 and its application in enrichment of orange and grape juices. J Food Sci Technol 51:1737–1749. https://doi.org/10.1007/s13197-014-1268-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hong J, Jung D, Park S et al (2021) Immobilization of laccase via cross-linked enzyme aggregates prepared using genipin as a natural cross-linker. Int J Biol Macromol 169:541–550. https://doi.org/10.1016/j.ijbiomac.2020.12.136

    Article  CAS  PubMed  Google Scholar 

  41. Ullah H, Pervez S, Ahmed S et al (2021) Preparation, characterization and stability studies of cross-linked α-amylase aggregates (CLAAs) for continuous liquefaction of starch. Int J Biol Macromol 173:267–276. https://doi.org/10.1016/j.ijbiomac.2021.01.057

    Article  CAS  PubMed  Google Scholar 

  42. Biely P, Vršanská M, Tenkanen M, Kluepfel D (1997) Endo-β-1,4-xylanase families: differences in catalytic properties. J Biotechnol 57:151–166. https://doi.org/10.1016/S0168-1656(97)00096-5

    Article  CAS  PubMed  Google Scholar 

  43. Biely P, Kluepfel D, Morosoli R, Shareck F (1993) Mode of action of three endo-β-1,4-xylanases of Streptomyces lividans. Biochimica et Biophysica Acta - Protein Struct Mol Enzymol 1162:246–254. https://doi.org/10.1016/0167-4838(93)90288-3

    Article  CAS  Google Scholar 

  44. Fu L-H, Jiang N, Li C-X et al (2019) Purification and characterization of an endo-xylanase from Trichoderma sp., with xylobiose as the main product from xylan hydrolysis. World J Microbiol Biotechnol 35:171. https://doi.org/10.1007/s11274-019-2747-1

    Article  CAS  PubMed  Google Scholar 

  45. Ai Z, Jiang Z, Li L et al (2005) Immobilization of Streptomyces olivaceoviridis E-86 xylanase on Eudragit S-100 for xylo-oligosaccharide production. Process Biochem 40:2707–2714. https://doi.org/10.1016/j.procbio.2004.12.006

    Article  CAS  Google Scholar 

  46. Lin Y-S, Tseng M-J, Lee W-C (2011) Production of xylooligosaccharides using immobilized endo-xylanase of Bacillus halodurans. Process Biochem 46:2117–2121. https://doi.org/10.1016/j.procbio.2011.08.008

    Article  CAS  Google Scholar 

  47. Carvalho AFA, de Neto PO, da Silva DF, Pastore GM (2013) Xylo-oligosaccharides from lignocellulosic materials: chemical structure, health benefits and production by chemical and enzymatic hydrolysis. Food Res Int 51:75–85. https://doi.org/10.1016/j.foodres.2012.11.021

    Article  CAS  Google Scholar 

  48. Abdul Wahab MKH, El-Enshasy HA, Bakar FDA et al (2019) Improvement of cross-linking and stability on cross-linked enzyme aggregate (CLEA)-xylanase by protein surface engineering. Process Biochem 86:40–49. https://doi.org/10.1016/j.procbio.2019.07.017

    Article  CAS  Google Scholar 

  49. Muley AB, Awasthi S, Bhalerao PP et al (2021) Preparation of cross-linked enzyme aggregates of lipase from Aspergillus niger: process optimization, characterization, stability, and application for epoxidation of lemongrass oil. Bioprocess Biosyst Eng 44:1383–1404. https://doi.org/10.1007/s00449-021-02509-7

    Article  CAS  PubMed  Google Scholar 

  50. Aytar BS, Bakir U (2008) Preparation of cross-linked tyrosinase aggregates. Process Biochem 43:125–131. https://doi.org/10.1016/j.procbio.2007.11.001

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Contributions

LPF participated in the study design and conducted analysis; RZV participated in the analysis of experimental data and manuscript preparation; MGO participated in the execution of biochemical characterization; LFA participated in the XOS production evaluation; VMG contributed to the study design and analysis of experimental data; and GPMA coordinated study design, analysis, and manuscript preparation.

Corresponding author

Correspondence to Gabriela Piccolo Maitan-Alfenas.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandes, L.P., Ventorim, R.Z., de Oliveira, M.G. et al. Xylooligosaccharides from Pretreated Rice Bran Produced by Immobilized Xylanase. Bioenerg. Res. (2024). https://doi.org/10.1007/s12155-024-10770-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12155-024-10770-3

Keywords

Navigation