Skip to main content
Log in

Bio-coal Synthesis via Hydrothermal Carbonization of Giant Salvinia for a High-Quality Solid Biofuel

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

The rapid proliferation of giant Salvinia (GS; Salvinia molesta) in various hydrostatic environments, such as ponds and paddy fields, poses a threat to water quality due to light obstruction. Thus, this study aimed to transform GS biomass into hydrochar or solid biofuel via hydrothermal carbonization (HTC). Several parameters were examined, including residence time, reaction temperature, and liquid-to-solid mass ratio (L/S). The Box-Behnken Design (BBD) was also employed to set the experimental conditions at three levels and factors. The examinations of reaction temperature (200–220 °C), residence time (2–6 h), and L/S ratio (12–20) were conducted. The physical and chemical characteristics of hydrochar were further analyzed to encompass higher heating value (HHV), proximate analysis, ultimate analysis, functional group, and morphology. The percent energy recovery (ER, %) was remarked for the experimental design response. The kinetic analysis and a comprehensive combustibility index, calculated from TGA/DTG curves, were employed to elucidate the combustion behavior of hydrochar. The optimal condition for hydrochar production, resulting in maximal ER, was identified at 220 °C, 6 h, with an L/S ratio of 16. The corresponding fixed carbon (FC), HHV, and mass yield were approximately 17.2%, 23.5 MJ/kg, and 51.4%, respectively. The H/C and O/C mole ratios in the sub-bituminous coal region. This study affirms the feasibility of converting GS biomass into a renewable fuel resembling low-rank coal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and supplementary material.

References

  1. Kabeyi MJB, Olanrewaju OA (2022) Sustainable energy transition for renewable and low carbon grid electricity generation and supply. Front Energy Res 9:743114. https://doi.org/10.3389/fenrg.2021.743114

    Article  Google Scholar 

  2. Papong S, Yuvaniyama C, Lohsomboon P, Pomthong M (2004) Overview of biomass utilization in Thailand. In: ‘Meeting’’ for LCA in ASEAN Biomass Project.’ International Conference Center “EPOCHAL TSUKUBA”, pp 1–10

  3. Ibitoye SE, Mahamood RM, Jen TC et al (2023) An overview of biomass solid fuels: biomass sources, processing methods, and morphological and microstructural properties. J Bioresour Bioprod 8:333–360. https://doi.org/10.1016/j.jobab.2023.09.005

    Article  CAS  Google Scholar 

  4. Chomchalow N (2011) Giant Salvinia-An Invasive Alien Aquatic Plant in Thailand 1. AU J T 15:77–82

    Google Scholar 

  5. Li S, Wang P, Su Z et al (2018) Endocide-induced abnormal growth forms of invasive giant Salvinia (Salvinia molesta). Sci Rep 8:8006. https://doi.org/10.1038/s41598-018-25986-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Syaichurrozi I (2018) Biogas production from co-digestion Salvinia molesta and rice straw and kinetics. Renew Energy 115:76–86. https://doi.org/10.1016/j.renene.2017.08.023

    Article  CAS  Google Scholar 

  7. Nawaj Alam S, Singh B, Guldhe A (2021) Aquatic weed as a biorefinery resource for biofuels and value-added products: challenges and recent advancements. Clean Eng Technol 4:100235

    Article  Google Scholar 

  8. Czerwińska K, Śliz M, Wilk M (2022) Hydrothermal carbonization process: Fundamentals, main parameter characteristics and possible applications including an effective method of SARS-CoV-2 mitigation in sewage sludge A review. Renew Sustain Energy Rev 154:111873. https://doi.org/10.1016/j.rser.2021.111873

    Article  CAS  Google Scholar 

  9. Shakiba A, Aliasghar A, Moazeni K, Pazoki M (2023) Hydrothermal carbonization of sewage sludge with sawdust and corn stalk: optimization of process parameters and characterization of hydrochar. Bioenergy Res 16:2386–2397. https://doi.org/10.1007/s12155-022-10552-9

    Article  CAS  Google Scholar 

  10. Wu S, Wang Q, Fang M et al (2023) Hydrothermal carbonization of food waste for sustainable biofuel production: advancements, challenges, and future prospects. Sci Total Environ 897:165327. https://doi.org/10.1016/J.SCITOTENV.2023.165327

    Article  CAS  PubMed  Google Scholar 

  11. Wang Q, Wu S, Cui D et al (2022) Co-hydrothermal carbonization of organic solid wastes to hydrochar as potential fuel: a review. Sci Total Environ 850:158034. https://doi.org/10.1016/J.SCITOTENV.2022.158034

    Article  CAS  PubMed  Google Scholar 

  12. Phuthongkhao P, Phasin K, Boonma P et al (2023) Preparation and characterization of hydrothermally processed carbonaceous hydrochar from pulp and paper sludge waste. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-023-03761-5

    Article  Google Scholar 

  13. Wu S, Wang Q, Cui D et al (2023) Evaluation of fuel properties and combustion behaviour of hydrochar derived from hydrothermal carbonization of agricultural wastes. J Energy Inst 108:101209. https://doi.org/10.1016/J.JOEI.2023.101209

    Article  CAS  Google Scholar 

  14. Zhao Y, Zhang S, Chen J (2015) Mechanisms of sequential dissolution and hydrolysis for lignocellulosic waste using a multilevel hydrothermal process. J Chem Eng 273:37–45. https://doi.org/10.1016/J.CEJ.2015.03.042

    Article  CAS  Google Scholar 

  15. El Hanandeh A, Albalasmeh A, Gharaibeh M (2021) Effect of pyrolysis temperature and biomass particle size on the heating value of biocoal and optimization using response surface methodology. Biomass Bioenergy 151:106163. https://doi.org/10.1016/j.biombioe.2021.106163

    Article  CAS  Google Scholar 

  16. Fan F, Zheng Z, Liu Y et al (2018) Preparation and characterization of optimized hydrochar from hydrothermal carbonization of macadamia shells. Bioresources. 13:967–980. https://doi.org/10.15376/biores.13.1.967-980

    Article  CAS  Google Scholar 

  17. Vieira RM, Sanvezzo PB, Branciforti MC, Brienzo M (2023) Effects of particle size on the preparation of biomass samples for structural characterization. Bioenergy Res 16:2192–2203. https://doi.org/10.1007/s12155-023-10587-6

    Article  CAS  Google Scholar 

  18. Wang C, Wang F, Yang Q, Liang R (2009) Thermogravimetric studies of the behavior of wheat straw with added coal during combustion. Biomass Bioenergy 33:50–56. https://doi.org/10.1016/j.biombioe.2008.04.013

    Article  CAS  Google Scholar 

  19. Xia X, Zhang K, Xiao H et al (2019) Effects of additives and hydrothermal pretreatment on the pelleting process of rice straw: energy consumption and pellets quality. Ind Crops Prod 133:178–184. https://doi.org/10.1016/j.indcrop.2019.03.007

    Article  CAS  Google Scholar 

  20. Shah AV, Srivastava VK, Mohanty SS, Varjani S (2021) Municipal solid waste as a sustainable resource for energy production: state-of-the-art review. J Environ Chem Eng 9:105717. https://doi.org/10.1016/j.jece.2021.105717

    Article  CAS  Google Scholar 

  21. Poomsawat S, Poomsawat W (2021) Analysis of hydrochar fuel characterization and combustion behavior derived from aquatic biomass via hydrothermal carbonization process. Case Stud Therm Eng 27:101255. https://doi.org/10.1016/j.csite.2021.101255

    Article  Google Scholar 

  22. Zhang B, Heidari M, Regmi B et al (2018) Hydrothermal carbonization of fruit wastes: a promising technique for generating hydrochar. Energies (Basel) 11:11082022. https://doi.org/10.3390/en11082022

    Article  CAS  Google Scholar 

  23. Wang T, Zhai Y, Zhu Y et al (2018) A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew Sustain Energy Rev 90:223–247. https://doi.org/10.1016/j.rser.2018.03.071

    Article  CAS  Google Scholar 

  24. Ma Q, Han L, Huang G (2018) Effect of water-washing of wheat straw and hydrothermal temperature on its hydrochar evolution and combustion properties. Bioresour Technol 269:96–103. https://doi.org/10.1016/j.biortech.2018.08.082

    Article  CAS  PubMed  Google Scholar 

  25. Zhang X, Li Y, Wang M et al (2020) Effects of hydrothermal carbonization conditions on the combustion and kinetics of wheat straw hydrochar pellets and efficiency improvement analyses. Energy Fuels 34:587–598. https://doi.org/10.1021/acs.energyfuels.9b03754

    Article  CAS  Google Scholar 

  26. Zhu Y, Si Y, Wang X et al (2018) Characterization of hydrochar pellets from hydrothermal carbonization of agricultural residues. Energy Fuels 32:11538–11546. https://doi.org/10.1021/acs.energyfuels.8b02484

    Article  CAS  Google Scholar 

  27. Qian W, Xie Q, Huang Y et al (2012) Combustion characteristics of semicokes derived from pyrolysis of low rank bituminous coal. Int J Min Sci Technol 22:645–650. https://doi.org/10.1016/j.ijmst.2012.08.009

    Article  CAS  Google Scholar 

  28. Sevilla M, Fuertes AB (2009) Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem Eur J 15:4195–4203. https://doi.org/10.1002/chem.200802097

    Article  CAS  PubMed  Google Scholar 

  29. Zhao X, Huang J, Li Z et al (2023) Influence of reaction time, temperature, and heavy metal zinc on characteristics of cellulose- and wood-derived hydrochars from hydrothermal carbonization. Bioenergy Res 16:856–864. https://doi.org/10.1007/s12155-022-10482-6

    Article  CAS  Google Scholar 

  30. Saddawi A, Jones JM, Williams A (2012) Influence of alkali metals on the kinetics of the thermal decomposition of biomass. Fuel Process Technol 104:189–197. https://doi.org/10.1016/j.fuproc.2012.05.014

    Article  CAS  Google Scholar 

  31. Mukunda HS (2022) Progress in Biomass combustion and applications. Adv Energy Res 37:113–213

    Google Scholar 

  32. Kambo HS, Dutta A (2015) A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renew Sustain Energy Rev 45:359–378. https://doi.org/10.1016/j.rser.2015.01.050

    Article  CAS  Google Scholar 

  33. Ma Q, Han L, Huang G (2017) Evaluation of different water-washing treatments effects on wheat straw combustion properties. Bioresour Technol 245:1075–1083. https://doi.org/10.1016/j.biortech.2017.09.052

    Article  CAS  PubMed  Google Scholar 

  34. Mau V, Arye G, Gross A (2018) Wetting properties of poultry litter and derived hydrochar. PLoS ONE 13:e0206299. https://doi.org/10.1371/journal.pone.0206299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu Z, Quek A, Kent Hoekman S, Balasubramanian R (2013) Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel 103:943–949. https://doi.org/10.1016/j.fuel.2012.07.069

    Article  CAS  Google Scholar 

  36. Chen WT, Qian W, Zhang Y et al (2017) Effect of ash on hydrothermal liquefaction of high-ash content algal biomass. Algal Res 25:297–306. https://doi.org/10.1016/j.algal.2017.05.010

    Article  Google Scholar 

  37. Calucci L, Rasse DP, Forte C (2013) Solid-state nuclear magnetic resonance characterization of chars obtained from hydrothermal carbonization of corncob and Miscanthus. Energy Fuels 27:303–309. https://doi.org/10.1021/ef3017128

    Article  CAS  Google Scholar 

  38. Kim D, Lee K, Park KY (2014) Hydrothermal carbonization of anaerobically digested sludge for solid fuel production and energy recovery. Fuel 130:120–125. https://doi.org/10.1016/j.fuel.2014.04.030

    Article  CAS  Google Scholar 

  39. Zhao P, Chen H, Ge S, Yoshikawa K (2013) Effect of the hydrothermal pretreatment for the reduction of no emission from sewage sludge combustion. Appl Energy 111:199–205. https://doi.org/10.1016/j.apenergy.2013.05.029

    Article  CAS  Google Scholar 

  40. Sevilla M, Maciá-Agulló JA, Fuertes AB (2011) Hydrothermal carbonization of biomass as a route for the sequestration of CO2: Chemical and structural properties of the carbonized products. Biomass Bioenerg 35:3152–3159. https://doi.org/10.1016/j.biombioe.2011.04.032

    Article  CAS  Google Scholar 

  41. Nizamuddin S, Mubarak NM, Tiripathi M et al (2016) Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell. Fuel 163:88–97. https://doi.org/10.1016/j.fuel.2015.08.057

    Article  CAS  Google Scholar 

  42. Wang L, Li A (2015) Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: the dewatering performance and the characteristics of products. Water Res 68:291–303. https://doi.org/10.1016/j.watres.2014.10.016

    Article  CAS  PubMed  Google Scholar 

  43. Areeprasert C, Zhao P, Ma D et al (2014) Alternative solid fuel production from paper sludge employing hydrothermal treatment. Energy Fuels 28:1198–1206. https://doi.org/10.1021/ef402371h

    Article  CAS  Google Scholar 

  44. Yang W, Shimanouchi T, Kimura Y (2015) Characterization of the residue and liquid products produced from husks of nuts from carya cathayensis sarg by hydrothermal carbonization. ACS Sustain Chem Eng 3:591–598. https://doi.org/10.1021/acssuschemeng.5b00103

    Article  CAS  Google Scholar 

  45. He C, Giannis A, Wang JY (2013) Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior. Appl Energy 111:257–266. https://doi.org/10.1016/j.apenergy.2013.04.084

    Article  CAS  Google Scholar 

  46. Sevilla M, Fuertes AB (2009) The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47:2281–2289. https://doi.org/10.1016/j.carbon.2009.04.026

    Article  CAS  Google Scholar 

  47. Gao Y, Wang X, Wang J et al (2013) Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth. Energy 58:376–383. https://doi.org/10.1016/j.energy.2013.06.023

    Article  CAS  Google Scholar 

  48. Zhang C, Ma X, Chen X et al (2020) Conversion of water hyacinth to value-added fuel via hydrothermal carbonization. Energy 197:117193. https://doi.org/10.1016/j.energy.2020.117193

    Article  CAS  Google Scholar 

  49. Román S, Ledesma B, Álvarez A et al (2020) Suitability of hydrothermal carbonization to convert water hyacinth to added-value products. Renew Energy 146:1649–1658. https://doi.org/10.1016/j.renene.2019.07.157

    Article  CAS  Google Scholar 

  50. Álvarez X, Cancela Á, Freitas V et al (2020) Hydrothermal carbonization and pellet production from Egeria densa and Lemna minor. Plants 9:9040425. https://doi.org/10.3390/plants9040425

    Article  CAS  Google Scholar 

Download references

Funding

This work received a scholarship from the Research and Graduate Studies, Khon Kaen University, Thailand. Also, this work was conducted under Khon Kaen University, which has received funding support from the Fundamental Fund (the National Science, Research and Innovation Fund (NSRF), Thailand) and the Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University.

Author information

Authors and Affiliations

Authors

Contributions

Piyanut Phuthongkhao: conceptualization, methodology, data curation, software, formal analysis, writing—original draft, and visualization. Rattabal Khunphonoi, Pongtanawat Khemthong, and Tossaporn Suwannaruang: validation and writing—review and editing. Kitirote Wantala: conceptualization, methodology, data curation, software, formal analysis, writing—original draft, visualization, supervision, writing—review and editing, and validation.

Corresponding author

Correspondence to Kitirote Wantala.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Bio-coal derived from giant Salvinia via hydrothermal carbonization was first demonstrated.

• Bio-coal obtained from giant Salvinia falls in the sub-bituminous traits.

• Higher heating value of bio-coal from giant Salvinia exceeds hydrochar from other aquatic ferns.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 83 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phuthongkhao, P., Khunphonoi, R., Khemthong, P. et al. Bio-coal Synthesis via Hydrothermal Carbonization of Giant Salvinia for a High-Quality Solid Biofuel. Bioenerg. Res. (2024). https://doi.org/10.1007/s12155-024-10766-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12155-024-10766-z

Keywords

Navigation