Skip to main content
Log in

Acclimation of the Aerial Microalga Coccomyxa subellipsoidea KGU-D001 to Water Stress in the Aerial Phase

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Aerial microalgae are resistant to nutrient and drought stresses and can survive even in harsh environments lacking water and nutrients. In this study, the adaptation mechanisms of microalgae to water stress by culturing aerial microalgae in a water-deprived environment were elucidated, and their biomass and lipid productivity were evaluated. Biofilms of the aerial microalga Coccomyxa subellipsoidea KGU-D001 (C. subellipsoidea) or the freshwater microalga Chlorella vulgaris (Chl. vulgaris) growing on silicon sheets were cultured under the same water stress conditions. C. subellipsoidea could maintain its photosynthetic activity at least for 14 days, while Chlvulgaris drastically decreased its photosynthetic activity during the first 7 days. The cell wall carbohydrate content of C. subellipsoidea increased during the first 7 days more than Chl. vulgaris. The fatty acids content in C. subellipsoidea increased 3.0-fold during the first 7 days and 1.7-fold from day 7 to day 14 of culture. In Chl. vulgaris, the fatty acid content increased by 2.2 times during the first 7 days and then remained constant from days 7 to 14 of culture. Fatty acid productivities were 17.3 and 14.2 mg/g/d in C. subellipsoidea and Chl. vulgaris, respectively. These findings suggest that the rapid formation of a thicker cell wall contributes to cellular acclimation to water stress conditions and the accumulation of lipids in C. subellipsoidea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data reported is included in the article or in the Supplementary Material.

Code Availability

Not applicable.

References

  1. Hepburn C, Adlen E, Beddington J, Carter EA, Fuss S, Dowell NM, Minx JC, Smith P, Williams CK (2019) The technological and economic prospects for CO2 utilization and removal. Nature 575:87–97. https://doi.org/10.1038/s41586-019-1681-6

    Article  CAS  ADS  PubMed  Google Scholar 

  2. Ananthi V, Brindhadevi K, Pugazhendhi A, Arun A (2021) Impact of abiotic factors on biodiesel production by microalgae. Fuel 284:118962. https://doi.org/10.1016/j.fuel.2020.118962

    Article  CAS  Google Scholar 

  3. Chhandama MVL, Satyan KB, Changmai B, Vanlalveni C, Rokhum SL (2021) Microalgae as a feedstock for the production of biodiesel: a review. Bioresour Technol Rep 15:100771. https://doi.org/10.1016/j.biteb.2021.100771

    Article  CAS  Google Scholar 

  4. Khoo CG, Dasan YK, Lam MK, Lee KT (2019) Algae biorefinery: review on a broad spectrum of downstream processes and products. Bioresour Technol 292:121964. https://doi.org/10.1016/j.biortech.2019.121964

    Article  CAS  PubMed  Google Scholar 

  5. Hoffmann L (1989) Algae of terrestrial habitats. Bot Rev 55:77–105. https://doi.org/10.1007/BF02858529

    Article  Google Scholar 

  6. Abe K, Ishiwatari T, Wakamatsu M, Aurai N (2014) Fatty acid content and profile of the aerial microalga Coccomyxa sp. isolated from dry environments. Appl Biochem Biotechnol 174:1724–1735. https://doi.org/10.1007/s10811-013-0106-4

    Article  CAS  PubMed  Google Scholar 

  7. Aburai N, Nishida A, Abe K (2021) Aerial microalgae Coccomyxa simplex isolated from a low-temperature, low-light environment, and its biofilm growth and lipid accumulation. Algal Res 60:102522. https://doi.org/10.1016/j.algal.2021.102522

    Article  Google Scholar 

  8. Ohkubo K, Aburai N, Miyauchi H, Tsuzuki M, Abe K (2017) CO2 fixation and lipid accumulation in biofilms of the aerial microalga Coccomyxa sp. KGU-D001 (Trebouxiophyceae). J Appl Phycol 29:1745–1753. https://doi.org/10.1007/s10811-017-1123-5

    Article  CAS  Google Scholar 

  9. Shiklomanov IA, Rodda JC (eds) (2003) World water resources at the beginning of the twenty-first century. Cambridge University Press

    Google Scholar 

  10. Georgianna DR, Mayfield SP (2012) Exploiting diversity and synthetic biology for the production of algal biofuels. Nature 488:329–335. https://doi.org/10.1038/nature11479

    Article  CAS  ADS  PubMed  Google Scholar 

  11. Miyauchi H, Harada K, Suzuki Y, Okada K, Aoki M, Umemura T, Fujiwara S, Tsuzuki M (2021) Development of an algal cell-attached solid surface culture system for simultaneous wastewater treatment and biomass production. Algal Res 58:102394. https://doi.org/10.1016/j.algal.2021.102394

    Article  Google Scholar 

  12. Cheng P, Ji B, Gao L, Zhang Wang J, Liu T (2013) The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation. Bioresour Technol 138:95–100. https://doi.org/10.1016/j.biortech.2013.03.150

    Article  CAS  PubMed  Google Scholar 

  13. Ji B, Zhang W, Zhang N, Wang J, Lutzu GA, Liu T (2014) Biofilm cultivation of the oleaginous microalgae Pseudochlorococcum sp. Bioprocess Biosyst Eng 37:1369–1375. https://doi.org/10.1016/j.biortech.2013.03.150

    Article  CAS  PubMed  Google Scholar 

  14. Liu T, Wang J, Hu Q, Cheng P, Ji B, Liu J, Chen Y, Zhang W, Chen X, Chen L, Gao L, Ji C, Wang H (2013) Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresour Technol 127:216–222. https://doi.org/10.1016/j.biortech.2012.09.100

    Article  CAS  PubMed  Google Scholar 

  15. Aburai N, Maruyama S, Shimizu K, Abe K (2019) Production of bioactive oligopeptide hydrolyzed by protease derived from aerial microalga Vischeria helvetica. J Biotechnol 294:67–72. https://doi.org/10.1016/j.jbiotec.2019.01.021

    Article  CAS  PubMed  Google Scholar 

  16. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  17. Miyauchi H, Okada K, Fujiwara S, Tsuzuki M (2020) Characterization of CO2 fixation on algal biofilms with an infrared gas analyzer and importance of a space-rich structure on the surface. Algal Res 46:101814. https://doi.org/10.1016/j.algal.2020.101814

    Article  Google Scholar 

  18. Aburai N, Kazama H, Tsuruoka A, Goto M, Abe K (2018) Development of a whole-cell-based screening method for a carotenoid assay using aerial microalgae. J Biotechnol 268:6–11. https://doi.org/10.1016/j.jbiotec.2017.12.025

    Article  CAS  PubMed  Google Scholar 

  19. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 345:659–668. https://doi.org/10.1093/jexbot/51.345.659

    Article  Google Scholar 

  20. Maltsev Y, Maltseva I, Maltseva S, Kociolek J, Kulikovskiy M (2019) Fatty acid content and profile of the novel strain of Coccomyxa elongata (Trebouxiophyceae, Chlorophyta) cultivated at reduced nitrogen and phosphorus concentrations. J Phycol 55:1154–1165. https://doi.org/10.1111/jpy.12903

    Article  CAS  PubMed  Google Scholar 

  21. Aburai N, Kawashima N, Morita R, Miyauchi H, Okada K, Sato N, Fujiwara S, Fujii K (2023) Biomass and lipid production in the aerial microalga Coccomyxa subellipsoidea KGU-D001 in the liquid and aerial phases. BioEnergy Res. https://doi.org/10.1007/s12155-023-10569-8

  22. Abe K, Bito T, Sato A, Aburai N (2014) Effects of light intensity and magnesium supplementation in pretreatment cycle on ammonium removal from wastewater of photobioreactor using a biofilter composed of the aerial microalga Trentepohlia aurea. J Appl Phycol 26:341–347. https://doi.org/10.1007/s10811-013-0106-4

    Article  CAS  Google Scholar 

  23. Pancha I, Chokshi K, George B, Ghosh T, Paliwal C, Maurya R, Mishra S (2014) Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresour Technol 156:146–154. https://doi.org/10.1016/j.biortech.2014.01.025

    Article  CAS  PubMed  Google Scholar 

  24. Zhang YM, Chen H, He CL, Wang Q (2013) Nitrogen starvation induced oxidative stress in an oil-producing green alga Chlorella sorokiniana C3. PLoS One 8:e69225. https://doi.org/10.1371/journal.pone.0069225

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  25. Recht L, Zarka A, Boussiba S (2012) Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Appl Microbiol Biotechnol 94:1495–1503. https://doi.org/10.1007/s00253-012-3940-4

    Article  CAS  PubMed  Google Scholar 

  26. Gaude N, Bréhélin C, Tischendorf G, Kessler F, Dörmann P (2007) Nitrogen deficiency in Arabidopsis affects galactolipid composition and gene expression and results in accumulation of fatty acid phytyl esters. Plant J 49:729–739. https://doi.org/10.1111/j.1365-313X.2006.02992.x

    Article  CAS  PubMed  Google Scholar 

  27. Chen G, Wang B, Han D, Sommerfeld M, Lu Y, Chen F, Hu Q (2015) Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis (Chlorophyceae). Plant J. 81:95–107. https://doi.org/10.1111/tpj.12713

    Article  CAS  PubMed  Google Scholar 

  28. Lippold F, Dorp K, Abraham M, Hölzl G, Wewer V, Yilmaz JL, Lager I, Montandon C, Besagni C, Kessler F, Stymne S, Dörmann P (2012) Fatty acid phytyl ester synthesis in chloroplasts of Arabidopsis. Plant Cell 24:2001–2014. https://doi.org/10.1105/tpc.112.095588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kováčik J, Antoš V, Micalizzi G, Dresler S, Hrabák P, Mondello L (2018) Accumulation and toxicity of organochlorines in green microalga. J Hazard Mater 347:168–175. https://doi.org/10.1016/j.jhazmat.2017.12.056

    Article  CAS  PubMed  Google Scholar 

  30. Romero N, Visentini FF, Márquez VE, Santiago LG, Castro GR, Gagneten AM (2020) Physiological and morphological responses of green microalgae Chlorella vulgaris to silver nanoparticles. Environ Res 189:109857. https://doi.org/10.1016/j.envres.2020.109857

    Article  CAS  PubMed  Google Scholar 

  31. Nikolaou A, Bernardi A, Meneghesso A, Bezzo F, Morosinotto T, Chachuat B (2015) A model of chlorophyll fluorescence in microalgae integrating photoproduction, photoinhibition and photoregulation. J Biotechnol 194:91–99. https://doi.org/10.1016/j.jbiotec.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  32. Woo NS, Badger MR, Pogson BJ (2008) A rapid, non-invasive procedure for quantitative assessment of drought survival using chlorophyll fluorescence. Plant Methods 4:27. https://doi.org/10.1186/1746-4811-4-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao LS, Li K, Wang QM, Song XY, Su HN, Xie BB, Zhang XY, Huang F, Chen XL, Zhou BC, Zhang YZ (2017) Nitrogen starvation impacts the photosynthetic performance of Porphyridium cruentum as revealed by chlorophyll a fluorescence. Sci Rep 7:8542. https://doi.org/10.1186/1746-4811-4-27

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  34. Habibi G, Ajory N (2015) The effect of drought on photosynthetic plasticity in Marrubium vulgare plants growing at low and high altitudes. J Plant Res 128:987–994. https://doi.org/10.1007/s10265-015-0748-1

    Article  CAS  PubMed  Google Scholar 

  35. Iwai M, Takahashi Y, Minagawa J (2008) Molecular remodeling of photosystem II during state transitions in Chlamydomonas reinhardtii. Plant Cell 20:2177–2189. https://doi.org/10.1105/tpc.108.059352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yamashita H, Sato Y, Kanegae T, Kagawa T, Wada M, Kadota A (2011) Chloroplast actin filaments organize meshwork on the photorelocated chloroplasts in the moss Physcomitrella patens. Planta 233:357–368. https://doi.org/10.1007/s00425-010-1299-2

    Article  CAS  PubMed  Google Scholar 

  37. Ho SH, Chen CY, Chang JS (2012) Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour Technol 113:244–252. https://doi.org/10.1016/j.biortech.2011.11.133

    Article  CAS  PubMed  Google Scholar 

  38. Otaki R, Oishi Y, Abe S, Fujiwara S, Sato N (2019) Regulatory carbon metabolism underlying seawater-based promotion of triacylglycerol accumulation in Chlorella kessleri. Bioresour Technol 289:121686. https://doi.org/10.1016/j.biortech.2019.121686

    Article  CAS  PubMed  Google Scholar 

  39. Barcyte D, Nedbalova L (2017) Coccomyxa: a dominant planktic alga in two acid lakes of different origin. Extremophiles 21:245–257

    Article  PubMed  Google Scholar 

  40. Wang Y, Liu X, Liu Y, Wang D, Xu Q, Li X, Yang Q, Wang Q, Ni BJ, Chen H (2020) Enhancement of short-chain fatty acids production from microalgae by potassium ferrate addition: feasibility, mechanisms and implications. Bioresour Technol 318:124266. https://doi.org/10.1016/j.biortech.2020.124266

    Article  CAS  PubMed  Google Scholar 

  41. Dragone G, Fernandes BD, Abreu AP, Vicente AA, Teixeira JA (2011) Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Appl Energy 88:3331–3335. https://doi.org/10.1016/j.apenergy.2011.03.012

    Article  CAS  ADS  Google Scholar 

  42. Baudelet PH, Ricochon G, Linder M, Muniglia L (2017) A new insight into cell walls of Chlorophyta. Algal Res 25:333–371. https://doi.org/10.1016/j.algal.2017.04.008

    Article  Google Scholar 

  43. Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, Prado FE (2009) Soluble sugars—metabolism, sensing and abiotic stress. Plant Signal Behav 4:388–393. https://doi.org/10.4161/psb.4.5.8294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gustavs L, Eggert A, Michalik D, Karsten U (2010) Physiological and biochemical responses of green microalgae from different habitats to osmotic and matric stress. Protoplasma 243:3–14. https://doi.org/10.1007/s00709-009-0060-9

    Article  CAS  PubMed  Google Scholar 

  45. Chen CY, Zhao XQ, Yen HW, Ho SH, Cheng CL, Lee DJ, Bai FW, Chang JS (2013) Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1–10. https://doi.org/10.1016/j.bej.2013.03.006

    Article  CAS  Google Scholar 

  46. Zhang S, He Y, Sen B, Wang G (2020) Reactive oxygen species and their applications toward enhanced lipid accumulation in oleaginous microorganisms. Bioresour Technol 307:1232324. https://doi.org/10.1016/j.biortech.2020.123234

    Article  CAS  Google Scholar 

  47. Liu X, Hong Y, Liu P, Zhan J, Yan R (2019) Effects of cultivation strategies on the cultivation of Chlorella sp. HQ in photoreactors. Front Environ Sci Eng 13:78. https://doi.org/10.1007/s11783-019-1162-z

    Article  CAS  Google Scholar 

  48. Sijil PV, Adki VR, Sarada R, Chauhan VS (2020) Stress induced modifications in photosystem II electron transport, oxidative status, and expression pattern of acc D and rbc L genes in an oleaginous microalga Desmodesmus sp. Bioresour Technol 318:124039. https://doi.org/10.1016/j.biortech.2020.124039

    Article  CAS  PubMed  Google Scholar 

  49. Ruiz-Domínguez MC, Vaquero I, Obregón V, Morena B, Vílchez C, Vega JM (2015) Lipid accumulation and antioxidant activity in the eukaryotic acidophilic microalga Coccomyxa sp. (strain onubensis) under nutrient starvation. J Appl Phycol 27:1099–1108. https://doi.org/10.1007/s10811-014-0403-6

    Article  CAS  Google Scholar 

  50. Li X, Li W, Zhai J, Wei H (2018) Effect of nitrogen limitation on biochemical composition and photosynthetic performance for fed-batch mixotrophic cultivation of microalga Spirulina platensis. Bioresour Technol 263:555–561. https://doi.org/10.1016/j.biortech.2018.05.046

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Jennifer Smith, PhD, from Edanz Group (https://jp.edanz.com/ac), for editing a draft of this manuscript.

Funding

This work was supported by the Strategic Research Foundation Grant-aided Project for Private Universities from the Ministry of Education, Culture, Sport, Science, and Technology, Japan (S1411005) and by the Research Institute for Science and Technology of Kogakuin University for a special Grant-in-Aid to earn KAKENHI by the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Contributions

Nobuhiro Aburai: conceptualization, resources, writing—review and editing—visualization, supervision, project administration, and funding acquisition. Rei Morita: conceptualization, methodology, validation, formal analysis, investigation, data curation, and writing —original draft. Hiroki Miyauchi: methodology, validation, and formal analysis. Katsuhiko Okada: formal analysis, investigation, and resources. Norihiro Sato: formal analysis, investigation, resources, and writing—review and editing. Shoko Fujiwara: formal analysis, investigation, resources, and writing—review and editing. Katsuhiko Fujii: supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Nobuhiro Aburai.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aburai, N., Morita, R., Miyauchi, H. et al. Acclimation of the Aerial Microalga Coccomyxa subellipsoidea KGU-D001 to Water Stress in the Aerial Phase. Bioenerg. Res. 17, 622–633 (2024). https://doi.org/10.1007/s12155-023-10651-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-023-10651-1

Keywords

Navigation