Skip to main content

Advertisement

Log in

An Integrated Approach for Simultaneous Monitoring and Data Acquisition on the Culture of Green Microalga Chlorella homosphaera Using Different LED Illumination

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Microalgae are considered one of the potent renewable energy sources; however, the microalgal biofuel technology is economically unsustainable due to higher biomass production costs. Radical reformations in microalgae culture and adequate data acquisition can significantly help optimize the microalgae biomass production and make the process economically viable. In the present study, a semiconductor-based microalgal culture experimentation setup was developed with automated monitoring capabilities. The capability of the TCS3200 color sensor to monitor the growth of the Chlorella homosphaera in real time was investigated by correlating the sensor data with spectrophotometer readings and found to be highly capable. The highest biomass productivity (0.38 g L−1 day−1) was achieved using pink and cool-white LED illumination. Furthermore, pink LED illumination recorded the highest lipid production (0.19 g L−1), which was 26.20% higher than cool-white LED. The initial experimentation generated 2300 data sets of color, light intensity, and temperature, showing the system’s capabilities to collect sufficient data to implement sophisticated computational algorithms for optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Franta B (2021) Early oil industry disinformation on global warming. Env Polit 30(4):663–668. https://doi.org/10.1080/09644016.2020.1863703

    Article  Google Scholar 

  2. Gielen D, Boshell F, Saygin D, Bazilian MD, Wagner N, Gorini R (2019) The role of renewable energy in the global energy transformation. Energy Strateg Rev 24:38–50. https://doi.org/10.1016/j.esr.2019.01.006

    Article  Google Scholar 

  3. Halkos GE, Gkampoura E-C (2020) Reviewing usage, potentials, and limitations of renewable energy sources. Energies 13(11):2906. https://doi.org/10.3390/en13112906

    Article  Google Scholar 

  4. Boomadevi P, Paulson V, Samlal S, Varatharajan M, Sekar M, Alsehli M, Elfasakhany A, Tola S (2021) Impact of microalgae biofuel on microgas turbine aviation engine: a combustion and emission study. Fuel 302:121155. https://doi.org/10.1016/j.fuel.2021.121155

    Article  CAS  Google Scholar 

  5. Jacob A, Ashok B, Alagumalai A, Chyuan OH, Le PTK (2021) Critical review on third generation microalgae biodiesel production and its feasibility as future bioenergy for IC engine applications. Energy Convers Manag 228:113655. https://doi.org/10.1016/j.enconman.2020.113655

    Article  CAS  Google Scholar 

  6. Sadatshojaei E, Wood DA, Mowla D (2020) Third generation of biofuels exploiting microalgae. In: Inamuddin, Asiri A (Eds.) Sustainable green chemical processes and their allied applications, 1st edn. Springer, Cham, pp. 575–588. https://doi.org/10.1007/978-3-030-42284-4_21

  7. Bhalamurugan GL, Valerie O, Mark L (2018) Valuable bioproducts obtained from microalgal biomass and their commercial applications: a review. Environ Eng Res 23(3):229–241. https://doi.org/10.4491/eer.2017.220

    Article  Google Scholar 

  8. Lafarga T (2019) Effect of microalgal biomass incorporation into foods: nutritional and sensorial attributes of the end products. Algal Res 41:101566. https://doi.org/10.1016/j.algal.2019.101566

    Article  Google Scholar 

  9. Suparmaniam U, Lam MK, Uemura Y, Lim JW, Lee KT, Shuit SHJR (2019) Insights into the microalgae cultivation technology and harvesting process for biofuel production: a review. Renew Sustain Energy Rev 115:109361. https://doi.org/10.1016/j.rser.2019.109361

    Article  CAS  Google Scholar 

  10. Vuppaladadiyam AK, Prinsen P, Raheem A, Luque R, Zhao M (2018) Sustainability analysis of microalgae production systems: a review on resource with unexploited high-value reserves. Environ Sci Technol 52(24):14031–14049. https://doi.org/10.1021/acs.est.8b02876

    Article  CAS  PubMed  Google Scholar 

  11. Ra CH, Sirisuk P, Jung J-H, Jeong G-T, Kim S-K (2018) Effects of light-emitting diode (LED) with a mixture of wavelengths on the growth and lipid content of microalgae. Bioprocess Biosyst Eng 41(4):457–465. https://doi.org/10.1007/s00449-017-1880-1

    Article  CAS  PubMed  Google Scholar 

  12. Glemser M, Heining M, Schmidt J, Becker A, Garbe D, Buchholz R, Brück T (2016) Application of light-emitting diodes (LEDs) in cultivation of phototrophic microalgae: current state and perspectives. Appl Microbiol Biotechnol 100(3):1077–1088. https://doi.org/10.1007/s00253-015-7144-6

    Article  CAS  PubMed  Google Scholar 

  13. Kwan PP, Banerjee S, Shariff M, Md. Yusoff F (2021) Influence of light on biomass and lipid production in microalgae cultivation. Aquac Res 52 (4):1337–1347. https://doi.org/10.1111/are.15023

  14. Jung J, Hong S-J, Kim H-B, Kim G, Lee M, Shin S, Lee S, Kim D-J, Lee C-G, Park Y (2018) Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography. Sci Rep 8(1):1–10. https://doi.org/10.1038/s41598-018-24393-0

    Article  CAS  Google Scholar 

  15. Jia F, Kacira M, Ogden KL (2015) Multi-wavelength based optical density sensor for autonomous monitoring of microalgae. Sensors 15(9):22234–22248. https://doi.org/10.3390/s150922234

    Article  PubMed  PubMed Central  Google Scholar 

  16. Winata HN, Nasution MA, Ahamed T, Noguchi R (2021) Prediction of concentration for microalgae using image analysis. Multimed Tools Appl 80(6):8541–8561. https://doi.org/10.1007/s11042-020-10052-y

    Article  Google Scholar 

  17. Salgueiro J, Pérez L. Sanchez Á, Cancela Á, Míguez C (2022) Microalgal biomass quantification from the non-invasive technique of image processing through red–green–blue (RGB) analysis.  J Appl Phycol pp1–11 https://doi.org/10.1007/s10811-021-02634-6

  18. Benavides M, Mailier J, Hantson A-L, Muñoz G, Vargas A, Van Impe J, Vande Wouwer A (2015) Design and test of a low-cost RGB sensor for online measurement of microalgae concentration within a photo-bioreactor. Sensors 15(3):4766–4780. https://doi.org/10.3390/s150304766

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yew GY, Puah BK, Chew KW, Teng SY, Show PL, Nguyen THP (2020) Chlorella vulgaris FSP-E cultivation in waste molasses: photo-to-property estimation by artificial intelligence. Chem Eng J 402:126230. https://doi.org/10.1016/j.cej.2020.126230

    Article  CAS  Google Scholar 

  20. García-Camacho F, López-Rosales L, Sánchez-Mirón A, Belarbi E, Chisti Y, Molina-Grima E (2016) Artificial neural network modeling for predicting the growth of the microalga Karlodiniumveneficum. Algal Res 14:58–64. https://doi.org/10.1016/j.algal.2016.01.002

  21. López-Rosales L, Gallardo-Rodríguez J, Sánchez-Mirón A, Contreras-Gómez A, García-Camacho F, Molina-Grima E (2013) Modelling of multi-nutrient interactions in growth of the dinoflagellate microalga Protoceratium reticulatum using artificial neural networks. Bioresour Technol 146:682–688. https://doi.org/10.1016/j.biortech.2013.07.141

    Article  CAS  PubMed  Google Scholar 

  22. Noguchi R, Ahamed T, Rani DS, Sakurai K, Nasution MA, Wibawa DS, Demura M, Watanabe MM (2019) Artificial neural networks model for estimating growth of polyculture microalgae in an open raceway pond. Biosyst Eng 177:122–129. https://doi.org/10.1016/j.biosystemseng.2018.10.002

    Article  Google Scholar 

  23. Liyanaarachchi VC, Nishshanka GKSH, Nimarshana PHV, Ariyadasa TU, Attalage RA (2020) Development of an artificial neural network model to simulate the growth of microalga Chlorella vulgaris incorporating the effect of micronutrients. J Biotechnol 312:44–55. https://doi.org/10.1016/j.jbiotec.2020.02.010

    Article  CAS  PubMed  Google Scholar 

  24. Wishkerman A, Wishkerman E (2017) Application note: a novel low-cost open-source LED system for microalgae cultivation. Comput Electron Agric 132:56–62. https://doi.org/10.1016/j.compag.2016.11.015

    Article  Google Scholar 

  25. Tham PE, Ng YJ, Vadivelu N, Lim HR, Khoo KS, Chew KW, Show PL (2022) Sustainable smart photobioreactor for continuous cultivation of microalgae embedded with Internet of Things. Bioresour Technol 346:126558. https://doi.org/10.1016/j.biortech.2021.126558

    Article  CAS  PubMed  Google Scholar 

  26. Gohain M, Hasin M, Eldiehy KS, Bardhan P, Laskar K, Phukon H, Mandal M, Kalita D, Deka D (2021) Bio-ethanol production: a route to sustainability of fuels using bio-based heterogeneous catalyst derived from waste. Process Saf Environ Prot 146:190–200. https://doi.org/10.1016/j.psep.2020.08.046

    Article  CAS  Google Scholar 

  27. Fawzy MA (2017) Fatty acid characterization and biodiesel production by the marine microalga Asteromonas gracilis: statistical optimization of medium for biomass and lipid enhancement. Mar Biotechnol 19(3):219–231. https://doi.org/10.1007/s10126-017-9743-y

    Article  CAS  Google Scholar 

  28. Zhang M, Gu L, Zheng P, Chen Z, Dou X, Qin Q, Cai X (2020) Improvement of cell counting method for Neubauer counting chamber. J Clin Lab Anal 34(1):e23024. https://doi.org/10.1002/jcla.23024

    Article  PubMed  Google Scholar 

  29. El-Sheekh MM, Hamouda RA, Nizam AA (2013) Biodegradation of crude oil by Scenedesmus obliquus and Chlorella vulgaris growing under heterotrophic conditions. Int Biodeterior Biodegradation 82:67–72. https://doi.org/10.1016/j.ibiod.2012.12.015

    Article  CAS  Google Scholar 

  30. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917. https://doi.org/10.1139/o59-099

    Article  CAS  PubMed  Google Scholar 

  31. Ma R, Thomas-Hall SR, Chua ET, Eltanahy E, Netzel ME, Netzel G, Lu Y, Schenk PM (2018) LED power efficiency of biomass, fatty acid, and carotenoid production in Nannochloropsis microalgae. Bioresour Technol 252:118–126. https://doi.org/10.1016/j.biortech.2017.12.096

    Article  CAS  PubMed  Google Scholar 

  32. Carvalho AP, Silva SO, Baptista JM, Malcata FX (2011) Light requirements in microalgal photobioreactors: an overview of biophotonic aspects. Appl Microbiol Biotechnol 89(5):1275–1288. https://doi.org/10.1007/s00253-010-3047-8

    Article  CAS  PubMed  Google Scholar 

  33. Li G, Gao K (2021) Photosynthetically active radiation and ultraviolet radiation measurements. In: Gao K, Hutchins DA, Beardall J (Eds.) Research methods of environmental physiology in aquatic sciences, 1st edn. Springer, Singapore, pp. 17–21. https://doi.org/10.1007/978-981-15-5354-7_2

  34. Zhao Y, Wang J, Zhang H, Yan C, Zhang Y (2013) Effects of various LED light wavelengths and intensities on microalgae-based simultaneous biogas upgrading and digestate nutrient reduction process. Bioresour Technol 136:461–468. https://doi.org/10.1016/j.biortech.2013.03.051

    Article  CAS  PubMed  Google Scholar 

  35. Atta M, Idris A, Bukhari A, Wahidin S (2013) Intensity of blue LED light: a potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresour Technol 148:373–378. https://doi.org/10.1016/j.biortech.2013.08.162

    Article  CAS  PubMed  Google Scholar 

  36. Ra C-H, Kang C-H, Jung J-H, Jeong G-T, Kim S-K (2016) Effects of light-emitting diodes (LEDs) on the accumulation of lipid content using a two-phase culture process with three microalgae. Bioresour Technol 212:254–261. https://doi.org/10.1016/j.biortech.2016.04.059

    Article  CAS  PubMed  Google Scholar 

  37. Bamba BSB, Lozano P, Adjé F, Ouattara A, Vian MA, Tranchant C, Lozano Y (2015) Effects of temperature and other operational parameters on Chlorella vulgaris mass cultivation in a simple and low-cost column photobioreactor. Appl Biochem Biotechnol 177(2):389–406. https://doi.org/10.1007/s12010-015-1751-7

    Article  CAS  PubMed  Google Scholar 

  38. Ang KH, Chong G, Li Y (2005) PID control system analysis, design, and technology. IEEE Trans Control Syst Technol 13(4):559–576. https://doi.org/10.1109/TCST.2005.847331

    Article  Google Scholar 

  39. Moheimani NR, Borowitzka MA, Isdepsky A, Sing SF (2013) Standard methods for measuring growth of algae and their composition. In: Borowitzka MA, Moheimani NR (Eds.) Algae for biofuels and energy, 1st edn. Springer, Dordrecht, pp. 265–284. https://doi.org/10.1007/978-94-007-5479-9_16

  40. Mohsenpour SF, Richards B, Willoughby N (2012) Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production. Bioresour Technol 125:75–81. https://doi.org/10.1016/j.biortech.2012.08.072

    Article  CAS  PubMed  Google Scholar 

  41. Vadiveloo A, Moheimani NR, Cosgrove JJ, Bahri PA, Parlevliet D (2015) Effect of different light spectra on the growth and productivity of acclimated Nannochloropsis sp. (Eustigmatophyceae). Algal Res 8:121–127. https://doi.org/10.1016/j.algal.2015.02.001

    Article  Google Scholar 

  42. Severes A, Hegde S, D’Souza L, Hegde S (2017) Use of light emitting diodes (LEDs) for enhanced lipid production in micro-algae based biofuels. J Photochem Photobiol B Biol 170:235–240. https://doi.org/10.1016/j.jphotobiol.2017.04.023

    Article  CAS  Google Scholar 

  43. Su CH, Fu CC, Chang YC, Nair GR, Ye JL, Chu IM, Wu WT (2008) Simultaneous estimation of chlorophyll a and lipid contents in microalgae by three-color analysis. Biotechnol Bioeng 99(4):1034–1039. https://doi.org/10.1002/bit.21623

    Article  CAS  PubMed  Google Scholar 

  44. Shao Y, Pan J, Zhang C, Jiang L, He Y (2015) Detection in situ of carotenoid in microalgae by transmission spectroscopy. Comput Electron Agric 112:121–127. https://doi.org/10.1016/j.compag.2014.10.008

    Article  Google Scholar 

Download references

Funding

The authors would like to acknowledge DBT, the Government of India, for providing financial support (Grant No- DBT/IC-2/Indo-Brazil/2016–19/04). K. Eldiehy would like to acknowledge the ICCR of India and the Ministry of Higher Education of Egypt for offering him a scholarship to pursue the Ph.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doljit Borah.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1544 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borah, D., Eldiehy, K.S.H., Hatiboruah, D. et al. An Integrated Approach for Simultaneous Monitoring and Data Acquisition on the Culture of Green Microalga Chlorella homosphaera Using Different LED Illumination. Bioenerg. Res. 16, 601–610 (2023). https://doi.org/10.1007/s12155-022-10452-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-022-10452-y

Keywords

Navigation