Skip to main content

Advertisement

Log in

Ultrasonic Energy Effect on Dark Fermentation by Ultrasound Application Alone and in Combination with Heat Shock

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

In the present work, the ultrasonic specific energy (USE) effect on anaerobic sludge in methane inhibition and hydrogen production capability by dark fermentation in pretreatments with ultrasound (US) and combined ultrasound with heat shock (US + HS) was evaluated. The non-pretreated anaerobic sludge was used as a control, and the sludge pretreated with heat shock (HS) at 85 °C for 45 min was a comparison system. HS inhibited methane production by 96.4 ± 0.6%, while pretreatments with US and US + HS in a USE interval between 20.5 and 102.5 kJ L−1 showed inhibition of 77.9 ± 0.37 to 88.9 ± 0.17% and 89.8 ± 0.17 to 95.7 ± 0.10%, respectively. Nevertheless, from the statistical analysis, it was determined that the HS and US + HS in all of the USE levels have the same inhibition effect. US at 41.0 kJ L−1 reached an accumulated hydrogen value that was 3.2-fold higher than the control and 79.5% greater than HS, while for US + HS at 82.0 kJ L−1, it was 2.3-fold higher than the control and 19.6% greater than HS. A comparative analysis from adimensionalized kinetic parameters showed that hydrogen production potential (Pmax) and maximum hydrogen rate (Rmax) on the anaerobic sludge pretreated with US and US + HS at 40 kHz are higher than or similar to that reported. The higher efficiencies of anaerobic sludge in hydrogen production from sucrose were seen in USE levels of 41.0 and 61.5 kJ L−1 for US, and of 61.5 and 82.0 kJ L−1 for US + HS. The HAc/HBut molar ratio from 0.255 to 0.410 showed that hydrogen was produced via the butyrate route. The ultrasonic specific energy applied to the anaerobic sludge of 41.0–61.5 kJ L−1 by ultrasound and 61.5–82.0 kJ L−1 by combined ultrasound with heat shock is a highly feasible method with which to inhibit methane production and improve hydrogen production in dark fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dutta S (2014) A review on production, storage of hydrogen and its utilization as an energy resource. J Ind Eng Chem 20:1148–1156. https://doi.org/10.1016/j.jiec.2013.07.037

    Article  CAS  Google Scholar 

  2. Nissilä ME, Lay CH, Puhakka JA (2014) Dark fermentative hydrogen production from lignocellulosic hydrolyzates – a review. Biomass Bioenergy 67:145–159. https://doi.org/10.1016/j.biombioe.2014.04.035

    Article  CAS  Google Scholar 

  3. Wang H, Fang M, Fang Z, Bu H (2010) Effects of sludge pretreatments and organic acids on hydrogen production by anaerobic fermentation. Bioresour Technol 101:8731–8735. https://doi.org/10.1016/j.biortech.2010.06.131

    Article  CAS  PubMed  Google Scholar 

  4. Wong YM, Wu TY, Juan JC (2014) A review of sustainable hydrogen production using seed sludge via dark fermentation. Renew Sust Energ Rev 34:471–482. https://doi.org/10.1016/j.rser.2014.03.008

    Article  CAS  Google Scholar 

  5. Kumar G, Bakonyi P, Kobayashi T, Xu KQ, Sivagurunathan P, Kim SH, Buitrón G, Nemestóthy N, Bélafi-Bakó K (2016) Enhancement of biofuel production via microbial augmentation: the case of dark fermentative hydrogen. Renew Sust Energ Rev 57:879–891. https://doi.org/10.1016/j.rser.2015.12.107

    Article  CAS  Google Scholar 

  6. Baghchehsaraee B, Nakhla G, Karamanev D, Margaritis A, Reid G (2008) The effect of heat pretreatment temperature on fermentative hydrogen production using mixed cultures. Int J Hydrog Energy 33:4064–4073. https://doi.org/10.1016/j.ijhydene.2008.05.069

    Article  CAS  Google Scholar 

  7. Wang J, Yin Y (2017) Principle and application of different pretreatment methods for enriching hydrogen-producing bacteria from mixed cultures. Int J Hydrog Energy 42:4804–4823. https://doi.org/10.1016/j.ijhydene.2017.01.135

    Article  CAS  Google Scholar 

  8. Mohan SV, Babu LV, Sarma PN (2008) Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresour Technol 99:59–67. https://doi.org/10.1016/j.biortech.2006.12.004

    Article  CAS  Google Scholar 

  9. Chang S, Li JZ, Liu F (2011) Evaluation of different pretreatment methods for preparing hydrogen-producing seed inocula from waste activated sludge. Renew Energ 36:1517–1522. https://doi.org/10.1016/j.renene.2010.11.023

    Article  CAS  Google Scholar 

  10. Sinha P, Pandey A (2011) An evaluative report and challenges for fermentative biohydrogen production. Int J Hydrog Energy 36:7460–7478. https://doi.org/10.1016/j.ijhydene.2011.03.077

    Article  CAS  Google Scholar 

  11. Kumar G, Bakonyi P, Sivagurunathan P, Kim SH, Nemestóthy N, Bélafi-Bakó K, Lin CY (2015) Enhanced biohydrogen production from beverage industrial wastewater using external nitrogen sources and bioaugmentation with facultative anaerobic strains. J Biosci Bioeng 120:155–160. https://doi.org/10.1016/j.jbiosc.2014.12.011

    Article  CAS  PubMed  Google Scholar 

  12. Mei R, Narihiro T, Nobu MK, Liu W-T (2016) Effects of heat shock on microbial community structure and microbial activity of a methanogenic enrichment degrading benzoate. Lett Appl Microbiol 63:356–362. https://doi.org/10.1111/lam.12629

    Article  CAS  PubMed  Google Scholar 

  13. Hasyima R, Imai T, Reungsang A, O-Thong S (2011) Extreme-thermophilic biohydrogen production by an anaerobic heat treated digested sewage sludge culture. Int J Hydrog Energy 36:8727–8734. https://doi.org/10.1016/j.ijhydene.2010.06.079

    Article  CAS  Google Scholar 

  14. Wang D, Wang Y, Liu X, Xu Q, Yang Q, Li X, Zhanga Y, Liu Y, Wang Q, Ni B-J, Li H (2019) Heat pretreatment assists free ammonia to enhance hydrogen production from waste activated sludge. Bioresour Technol 283:315–325. https://doi.org/10.1016/j.biortech.2019.03.090

    Article  CAS  Google Scholar 

  15. O-Thong S, Prasertsan P, Birkeland NK (2009) Evaluation of methods for preparing hydrogen-producing seed inocula under thermophilic condition by process performance and microbial community analysis. Bioresour Technol 100:909–918. https://doi.org/10.1016/j.biortech.2008.07.036

    Article  CAS  PubMed  Google Scholar 

  16. Rokhina EV, Lens P, Virkutyte J (2009) Low-frequency ultrasound in biotechnology: state of the art. Trends Biotechnol 27:298–306. https://doi.org/10.1016/j.tibtech.2009.02.001

    Article  CAS  PubMed  Google Scholar 

  17. Gao S, Lewis GD, Ashokkumar M, Hemar Y (2014) Inactivation of microorganisms by low-frequency high-power ultrasound: 1. Effect of growth phase and capsule properties of the bacteria. Ultrason Sonochem 21:446–453. https://doi.org/10.1016/j.ultsonch.2013.06.006

    Article  CAS  PubMed  Google Scholar 

  18. Xiao BY, Liu JX (2009) Effects of various pretreatments on biohydrogen production from sewage sludge. Chin Sci Bull 54:2038–2044. https://doi.org/10.1007/s11434-009-0100-z

    Article  CAS  Google Scholar 

  19. Kim S, Choi K, Kim JO, Chung J (2013) Biological hydrogen production by anaerobic digestion of food waste and sewage sludge treated using various pretreatment technologies. Biodegradation 24:753–764. https://doi.org/10.1007/s10532-013-9623-8

    Article  CAS  PubMed  Google Scholar 

  20. Yang G, Wang J (2017) Fermentative hydrogen production from sewage sludge. Crit Rev Environ Sci Technol 47:1219–1281. https://doi.org/10.1021/acs.energyfuels.6b01034

    Article  CAS  Google Scholar 

  21. Bundhoo ZMA (2017) Effects of microwave and ultrasound irradiations on dark fermentative bio-hydrogen production from food and yard wastes. Int J Hydrog Energy 42:4040–4050. https://doi.org/10.1016/j.ijhydene.2016.10.149

    Article  CAS  Google Scholar 

  22. Dong L, Zhenhong Y, Yongming S, Longlong M (2010) Evaluation of pretreatment methods on harvesting hydrogen producing seeds from anaerobic digested organic fraction of municipal solid waste (OFMSW). Int J Hydrog Energy 35:8234–8240. https://doi.org/10.1016/j.ijhydene.2009.12.058

    Article  CAS  Google Scholar 

  23. Chaitanya N, Sivaramakrishna D, Satish-kumar B, Himabindu V, Lakshminarasu M, Vishwanadham M (2016) Selection of pretreatment method for enriching hydrogen-producing bacteria using anaerobic sewage sludge with three different substrates. Biofuels 7:163–171. https://doi.org/10.1080/17597269.2015.1123969

    Article  CAS  Google Scholar 

  24. Elbeshbishy E, Hafez H, Nakhla G (2010) Enhancement of biohydrogen producing using ultrasonication. Int J Hydrog Energy 35:6184–6193. https://doi.org/10.1016/j.ijhydene.2010.03.119

    Article  CAS  Google Scholar 

  25. Yin YN, Yang G, Wang JL (2018) Fermentative hydrogen production using disintegrated waste-activated sludge by low-frequency ultrasound pretreatment. Energy Fuel 32:574–580. https://doi.org/10.1021/acs.energyfuels.7b03263

    Article  CAS  Google Scholar 

  26. Yang SS, Guo WQ, Cao GL, Zheng HZ, Ren NQ (2012) Simultaneous waste activated sludge disintegration and biological hydrogen production using an ozone/ultrasound pretreatment. Bioresour Technol 124:347–354. https://doi.org/10.1016/j.biortech.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  27. Yang G, Wang JL (2019) Ultrasound combined with dilute acid pretreatment of grass for improvement of fermentative hydrogen production. Bioresour Technol 275:10–18. https://doi.org/10.1016/j.biortech.2018.12.013

    Article  CAS  PubMed  Google Scholar 

  28. Niu Q, Xu Q, Wang Y, Wang D, Liu X, Liu Y, Wang Q, Ni B-J, Yang Q, Li X, Li H (2019) Enhanced hydrogen accumulation from waste activated sludge by combining ultrasonic and free nitrous acid pretreatment: performance, mechanism, and implication. Bioresour Technol 285:121363. https://doi.org/10.1016/j.biortech.2019.121363

    Article  CAS  PubMed  Google Scholar 

  29. Boboescu IZ, Gherman VD, Mirel I, Pap B, Tengölics R, Rákhely G, Kovács KL, Kondorosi E, Maróti G (2014) Simultaneous biohydrogen production and wastewater treatment based on the selective enrichment of the fermentation ecosystem. Int J Hydrog Energy 39:1502–1510. https://doi.org/10.1016/j.ijhydene.2013.08.139

    Article  CAS  Google Scholar 

  30. Guo YP, Kim SH, Sung S, Lee P (2010) Effect of ultrasonic treatment of digestion sludge on bio-hydrogen production from sucrose by anaerobic fermentation. Int J Hydrog Energy 35:3450–3455. https://doi.org/10.1016/j.ijhydene.2010.01.090

    Article  CAS  Google Scholar 

  31. Wang L, Boussetta N, Lebovka N, Vorobiev E (2018) Selectivity of ultrasound-assisted aqueous extraction of valuable compounds from flesh and peel of apple tissues. LWT-Food Sci Technol 93:511–516. https://doi.org/10.1016/j.lwt.2018.04.007

    Article  CAS  Google Scholar 

  32. Kavithaa S, Banu JR, Kumar G, Kaliappan S, Yeom IT (2018) Profitable ultrasonic assisted microwave disintegration of sludge biomass: modelling of biomethanation and energy parameter analysis. Bioresour Technol 254:203–213. https://doi.org/10.1016/j.biortech.2018.01.072

    Article  CAS  Google Scholar 

  33. Neumann P, González Z, Vidal G (2017) Sequential ultrasound and low-temperature thermal pretreatment: process optimization and influence on sewage sludge solubilization, enzyme activity and anaerobic digestion. Bioresour Technol 234:178–187. https://doi.org/10.1016/j.biortech.2017.03.029

    Article  CAS  PubMed  Google Scholar 

  34. Foladori P, Laura B, Gianni A, Giugliano Z (2007) Effects of sonication on bacteria viability in wastewater treatment plants evaluated by flow cytometry–fecal indicators, wastewater and activated sludge. Water Res 41:235–243. https://doi.org/10.1016/j.watres.2006.08.021

    Article  CAS  PubMed  Google Scholar 

  35. APHA (2005) Standard methods for the examination water and wastewater. 19 th ed. American public health association, Washington, DC, USA

  36. Wong YM, Wu TW, Juan JC (2014) A review of sustainable hydrogen production using seed sludge via dark fermentation. Renew Sust Energ Rev 34:471–482 https://doi.org/10.1016/j.rser.2014.03.008

    Article  CAS  Google Scholar 

  37. Mason TJ, Lorimer JP, Bates DM (1992) Quantifying sonochemistry: casting some light on a black art. Ultrasonics 30:40–42. https://doi.org/10.1016/0041-624X(92)90030-P

    Article  CAS  Google Scholar 

  38. Davila-Vazquez G, Alatriste-Mondragón F, León-Rodríguez A, Razo-Flores E (2008) Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose: influence of initial substrate concentration and pH. Int J Hydrog Energy 33:4989–4997. https://doi.org/10.1016/j.ijhydene.2008.06.065

    Article  CAS  Google Scholar 

  39. Cisneros-Pérez C, Etchebehere C, Celis LB, Carrillo-Reyes J, Alatriste-Mondragón F, Razo-Flores E (2017) Effect of inoculum pretreatment on the microbial community structure and its performance during dark fermentation using anaerobic fluidized-bed reactors. Int J Hydrog Energy 42:9589–9599. https://doi.org/10.1016/j.ijhydene.2017.03.157

    Article  CAS  Google Scholar 

  40. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. https://doi.org/10.1021/ac60111a017

    Article  CAS  Google Scholar 

  41. Pan CM, Fan YT, Xing Y, Hou HW, Zhang ML (2008) Statistical optimization of process parameters on bio-hydrogen production from glucose by Clostridium sp.Fanp2. Bioresour Technol 99:3146–3154. https://doi.org/10.1016/j.biortech.2007.05.055

    Article  CAS  PubMed  Google Scholar 

  42. Ware A, Power N (2017) Modelling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions. Renew Energ 104:50–59. https://doi.org/10.1016/j.renene.2016.11.045

    Article  CAS  Google Scholar 

  43. Broekman S, Pohlmann O, Beardwood ES, Cordemans de Meulenaer E (2010) Ultrasonic treatment for microbiological control of water systems. Ultrason Sonochem 17:1041–1048. https://doi.org/10.1016/j.ultsonch.2009.11.011

    Article  CAS  PubMed  Google Scholar 

  44. Collis J, Manasseh R, Liovic P, Tho P, Ooi A, Petkovic-Duran K, Zhu Y (2010) Cavitation microstreaming and stress fields created by microbubbles Ultrasonics 50: 273–279. https://doi.org/10.1016/j.ultras.2009.10.002

  45. Jiménez-González A, Ramírez-Vargas R, Goméz-Valadez A, Gutiérrez-Rojas M, Monroy-Hermosillo O, Medina-Moreno SA (2019) Sorption and inhibitory effect of octylphenol ethoxylate triton X-100 on methanogenic and denitrifying granular sludges. J Environ Manag 236:309–316. https://doi.org/10.1016/j.jenvman.2019.02.004

    Article  CAS  Google Scholar 

  46. Drakopoulou S, Terzakis S, Fountoulakis MS, Mantzavinos D, Manios T (2009) Ultrasound-induced inactivation of gram-negative and gram-positive bacteria in secondary treated municipal wastewater. Ultrason Sonochem 16:629–634. https://doi.org/10.1016/j.ultsonch.2008.11.011

    Article  CAS  PubMed  Google Scholar 

  47. Leaño EP, Anceno AJ, Babel S (2012) Ultrasound pretreatment of palm oil mill effluent: impact on biohydrogen production, bioelectricity generation, and underlying microbial communities. Int J Hydrog Energy 37:12241–12249. https://doi.org/10.1016/j.ijhydene.2012.06.007

    Article  CAS  Google Scholar 

  48. Braguglia CM, Gagliano MC, Rossetti S (2012) High frequency ultrasound pretreatment for sludge anaerobic digestion: effect on floc structure and microbial population. Bioresour Technol 110:43–49. https://doi.org/10.1016/j.biortech.2012.01.074

    Article  CAS  PubMed  Google Scholar 

  49. Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40:253–266. https://doi.org/10.1016/j.molcel.2010.10.006

    Article  CAS  PubMed  Google Scholar 

  50. Schumann W (2016) Regulation of bacterial heat shock stimulons. Cell Stress Chaperon 21:959–968. https://doi.org/10.1007/s12192-016-0727-z

    Article  CAS  Google Scholar 

  51. Zinatizadeh AA, Mirghorayshi M, Birgani PM, Mohammadi P, Ibrahim S (2017) Influence of thermal and chemical pretreatment on structural stability of granular sludge for high-rate hydrogen production in an UASB bioreactor. Int J Hydrog Energy 42:20512–20519. https://doi.org/10.1016/j.ijhydene.2017.07.029

    Article  CAS  Google Scholar 

  52. More TT, Ghangrekar MM (2010) Improving performance of microbial fuel cell with ultrasonication pretreatment of mixed anaerobic inoculum sludge. Bioresour Technol 101:562–567. https://doi.org/10.1016/j.biortech.2009.08.045

    Article  CAS  PubMed  Google Scholar 

  53. Kumari S, Das D (2017) Improvement of biohydrogen production using acidogenic culture. Int J Hydrog Energy 42:4083–4094. https://doi.org/10.1016/j.ijhydene.2016.09.021

    Article  CAS  Google Scholar 

  54. Yin Y, Hua J, Wang J (2014) Enriching hydrogen-producing bacteria from digested sludge by different pretreatment methods. Int J Hydrog Energy 39:13550–13556. https://doi.org/10.1016/j.ijhydene.2014.01.145

    Article  CAS  Google Scholar 

  55. Garcia JL, Patel BKC, Ollivier B (2000) Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe 6:205–226. https://doi.org/10.1006/anae.2000.0345

    Article  CAS  PubMed  Google Scholar 

  56. Herbert HP, Hong L (2002) Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour Technol 82:87–93. https://doi.org/10.1016/S0960-8524(01)00110-9

    Article  Google Scholar 

  57. Tao Y, Chen Y, Wu Y, He Y, Zhou Z (2017) High hydrogen yield from a two-step process of dark-and photo-fermentation of sucrose. Int J Hydrog Energy 32:200–206. https://doi.org/10.1016/j.ijhydene.2006.06.034

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Electron Microscopy Units of the Universidad Autónoma de México, CBS and Universidad Autónoma del Estado de Hidalgo, Chemical Faculty, for the help with SEM.

Funding

This study was financially supported by the Mexico Science and Technology National Council (CONACYT, grant no. 557375).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angélica Jiménez-González.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pineda-Muñoz, C.F., Conde-Baez, L., Lucho-Constantino, C. et al. Ultrasonic Energy Effect on Dark Fermentation by Ultrasound Application Alone and in Combination with Heat Shock. Bioenerg. Res. 13, 334–348 (2020). https://doi.org/10.1007/s12155-020-10104-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10104-z

Keywords

Navigation