Skip to main content
Log in

Seasonal Changes in the Chemical Composition and Anaerobic Digestibility of Harvested Submerged Macrophytes

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Anaerobic digestion is an effective method for treating excessive submerged macrophytes, which are causing severe environmental issues worldwide. The biomethane potential (BMP) of submerged macrophytes varies depending on the seasonal changes in the lignin content of each species and the species composition of harvested submerged macrophytes. In this study, the seasonality of the chemical composition and BMP of three dominant submerged macrophytes species, i.e., Egeria densa, Elodea nuttallii, and Potamogeton maackianus, were elucidated. The theoretical monthly methane yield (TMMY) and theoretical annual methane yield (TAMY) of the submerged macrophytes harvested from Lake Biwa were then estimated. The methane yields of E. densa and E. nuttallii were 212–252 and 189–284 mL g-VS−1, respectively, while that of P. maackianus was lower, at 140–165 mL g-VS−1. Although chemical composition parameters, such as the lignin content, significantly changed between different seasons (p < 0.05), they range from only 7.8–14.6%. Therefore, the seasonal variations in the methane yield of the harvested submerged macrophytes depend on the species composition. The calculated TMMY of submerged macrophytes harvested from Lake Biwa was lower from autumn to spring (171–186 mL g-VS−1) than that in summer (213–231 mL g-VS−1) due to the predominance of P. maackianus. The estimated TAMYs for several years revealed that a constant volume of methane gas could be obtained annually from the harvested submerged macrophyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kumar S (2011) Aquatic weeds problems and management in India. Indian J Weed Sci 43:118–138

    Google Scholar 

  2. Haga H, Ashiya M, Ohtsuka T, Matsuda M, Tuji A, Baba K, Numahata S, Yamane T (2006) Relationship between dissolved oxygen concentration of bottom water and macrophyte biomass in the southern basin of Lake Biwa. Japan Japanese J Limnol 67:23–27. https://doi.org/10.3739/rikusui.67.23

    Article  CAS  Google Scholar 

  3. Maruno S, Hamabata E (2016) Effects of macrophyte reaping on macrophyte community at southern part of Lake Biwa. Izunuma-Uchinuma Wetl Res 10:9–19

    Google Scholar 

  4. Shiga prefecture, 2015. State of the Lake Biwa and Our Life (Japanese only) http://mlf.shiga.jp/PDF/H27_biwacomi5_biwako_now.pdf

  5. Ban S, Toda T, Koyama M, Ishikawa K, Kohzu A, Imai A (2018) Modern lake ecosystem management by sustainable harvesting and effective utilization of aquatic macrophytes. Limnology. 20:93–100. https://doi.org/10.1007/s10201-018-0557-z

    Article  Google Scholar 

  6. Crocamo A, Di Bernardino S, Di Giovanni R, Fabbricino M, Martins-Dias S (2015) An integrated approach to energy production and nutrient recovery through anaerobic digestion of Vetiveria zizanoides. Biomass Bioenergy 81:288–293. https://doi.org/10.1016/j.biombioe.2015.07.023

    Article  CAS  Google Scholar 

  7. Mussatto SI, Fernandes M, Milagres AMF, Roberto IC (2008) Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain. Enzym Microb Technol 43:124–129. https://doi.org/10.1016/j.enzmictec.2007.11.006

    Article  CAS  Google Scholar 

  8. Sawatdeenarunat C, Surendra KC, Takara D, Oechsner H, Kumar Khanal S (2014) Anaerobic digestion of lignocellulosic biomass: challenges and opportunities. Bioresour Technol 178:178–186. https://doi.org/10.1016/j.biortech.2014.09.103

    Article  CAS  PubMed  Google Scholar 

  9. Kobayashi T, Wu Y-P, Lu Z-J, Xu K-Q (2014) Characterization of anaerobic degradability and kinetics of harvested submerged aquatic weeds used for nutrient phytoremediation. Energies 8:304–318. https://doi.org/10.3390/en8010304

    Article  CAS  Google Scholar 

  10. Koyama M, Yamamoto S, Ishikawa K, Ban S, Toda T (2014) Anaerobic digestion of submerged macrophytes: chemical composition and anaerobic digestibility. Ecol Eng 69:304–309. https://doi.org/10.1016/j.ecoleng.2014.05.013

    Article  Google Scholar 

  11. Koyama M, Yamamoto S, Ishikawa K, Ban S, Toda T (2015) Enhancing anaerobic digestibility of lignin-rich submerged macrophyte using thermochemical pre-treatment. Biochem Eng J 99:124–130. https://doi.org/10.1016/j.bej.2015.03.013

    Article  CAS  Google Scholar 

  12. Santamaría, L., Hootsmans, M.J.M., 1998. The effect of temperature on the photosynthesis , growth and reproduction of a Mediterranean submerged macrophyte, Ruppia drepanensis. Aquat Bot 60, 188. https://doi.org/10.1016/S0304-3770(97)00050-8

    Article  Google Scholar 

  13. Hoffmann L, Rooney WL (2014) Accumulation of biomass and compositional change over the growth season for six photoperiod sorghum lines. Bioenergy Res. 7:811–815. https://doi.org/10.1007/s12155-013-9405-5

    Article  CAS  Google Scholar 

  14. Dragoni F, Di Nasso NN, Tozzini C, Bonari E, Ragaglini G (2015) Aboveground yield and biomass quality of giant reed (Arundo donax L.) as affected by harvest time and frequency. Bioenergy Res. 8:1321–1331. https://doi.org/10.1007/s12155-015-9598-x

    Article  CAS  Google Scholar 

  15. Frydendal-Nielsen S, Hjorth M, Baby S, Felby C, Jørgensen U, Gislum R (2016) The effect of harvest time, dry matter content and mechanical pretreatments on anaerobic digestion and enzymatic hydrolysis of miscanthus. Bioresour Technol 218:1008–1015. https://doi.org/10.1016/j.biortech.2016.07.046

    Article  CAS  PubMed  Google Scholar 

  16. Schittenhelm S (2008) Chemical composition and methane yield of maize hybrids with contrasting maturity. Eur J Agron 29:72–79. https://doi.org/10.1016/j.eja.2008.04.001

    Article  CAS  Google Scholar 

  17. Hübner M, Oechsner H, Koch S, Seggl A, Hrenn H, Schmiedchen B, Wilde P, Miedaner T (2011) Impact of genotype, harvest time and chemical composition on the methane yield of winter rye for biogas production. Biomass Bioenergy 35:4316–4323. https://doi.org/10.1016/j.biombioe.2011.07.021

    Article  CAS  Google Scholar 

  18. McEniry J, O’Kiely P (2013) Anaerobic methane production from five common grassland species at sequential stages of maturity. Bioresour Technol 127:143–150. https://doi.org/10.1016/j.biortech.2012.09.084

    Article  CAS  PubMed  Google Scholar 

  19. Dragoni F, Giannini V, Ragaglini G, Bonari E, Silvestri N (2017) Effect of harvest time and frequency on biomass quality and biomethane potential of common reed (Phragmites australis) under paludiculture conditions. Bioenergy Res 10:1066–1078. https://doi.org/10.1007/s12155-017-9866-z

    Article  CAS  Google Scholar 

  20. Gómez LD, Amalfitano C, Andolfi A, Simister R, Somma S, Ercolano MR, Borrelli C, McQueen-Mason SJ, Frusciante L, Cuciniello A, Caruso G (2017) Valorising faba bean residual biomass: effect of farming system and planting time on the potential for biofuel production. Biomass Bioenergy 107:227–232. https://doi.org/10.1016/j.biombioe.2017.10.019

    Article  CAS  Google Scholar 

  21. Godin B, Mayer F, Agneessens R, Gerin P, Dardenne P, Delfosse P, Delcarte J (2015) Bioresource technology biochemical methane potential prediction of plant biomasses : comparing chemical composition versus near infrared methods and linear versus non-linear models. Bioresour Technol 175:382–390

    Article  CAS  Google Scholar 

  22. Kandel TP, Sutaryo S, Møller HB, Jørgensen U, Lærke PE (2013) Chemical composition and methane yield of reed canary grass as influenced by harvesting time and harvest frequency. Bioresour Technol 130:659–666. https://doi.org/10.1016/j.biortech.2012.11.138

    Article  CAS  PubMed  Google Scholar 

  23. Best EPH, Dassen JHA (1987) A seasonal study of growth characteristics and the levels of carbohydrates and proteins. Aquat Bot 28:353–372

    Article  CAS  Google Scholar 

  24. Taheruzzaman Q, Kushari DP (1989) Evaluation of some common aquatic macrophytes cultivated in enriched water as possible source of protein and biogas. Hydrobiol Bull 23:207–212. https://doi.org/10.1007/BF02256739

    Article  CAS  Google Scholar 

  25. Hamabata E (1997) Distribution, fluctuation stand structure of Elodea nuttallii, and yearly biomass an alien species in Lake Biwa studies. Japanese J Limnol (Rikusuigaku Zasshi):173–190. https://doi.org/10.3739/rikusui.58.173

    Article  Google Scholar 

  26. Carrillo Y, Guarín A, Guillot G (2006) Biomass distribution, growth and decay of Egeria densa in a tropical high-mountain reservoir (NEUSA, Colombia). Aquat Bot 85:7–15. https://doi.org/10.1016/j.aquabot.2006.01.006

    Article  Google Scholar 

  27. Kadono Y (1984) Comparative ecology of Japanese Potamogeton: an extensive survey with special reference to growth form and life cycle. Japanese J Ecol 34:161–172

    Google Scholar 

  28. Kunii, H., 1984. Seasonal growth and profile structure development of Elodea nuttallii (planch.) St. John in pond Ojaga-Ike, Japan Aquat Bot 18, 239–247. https://doi.org/10.1016/0304-3770(84)90065-2

    Article  Google Scholar 

  29. Haramoto, T., Ikusima, I., 1988. Life cycle of Egeria densa planch., an aquatic plant naturalized in Japan. Aquat Bot 30, 389–403. https://doi.org/10.1016/0304-3770(88)90070-8

    Article  Google Scholar 

  30. Van Wijk, R.J., 1988. Ecological studies on Potamogeton pectinatus L. I. General characteristics, biomass production and life cycles under field conditions. Aquat Bot 31, 211–258. https://doi.org/10.1016/0304-3770(88)90015-0

    Article  Google Scholar 

  31. Haga H, Ishikawa K (2016) Spatial distribution of submerged macrophytes in the southern Lake Biwa basin in the summer of 2014, in comparison with those in 2002, 2007 and 2012. Japanese J. Limnol. (Rikusuigaku Zasshi) 77:55–64

    Article  Google Scholar 

  32. Imamoto H, Matsumoto J, Furusato E, Washitani I (2008) Light and water temperature parameters of 6 species of submerged macrophytes in Lake Biwa (in Japanese). Ecol Civ Eng 11:1–12. https://doi.org/10.3825/ece.11.1

    Article  Google Scholar 

  33. APHA, Standard methods for the examination of water and wastewater, American public health association 2005

  34. Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74, 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2

    Article  CAS  Google Scholar 

  35. Triolo JM, Sommer SG, Møller HB, Weisbjerg MR, Jiang XY (2011) A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential. Bioresour Technol 102:9395–9402. https://doi.org/10.1016/j.biortech.2011.07.026

    Article  CAS  PubMed  Google Scholar 

  36. Ohmi Environment Conservation Foundation (2015) State of aquatic weeds growth in Lake Biwa and effective utilization. Tommorows Ohmi 12

  37. Abbasi, S.A., Nipaney, P.C., Schaumberg, G.D., 1990. Bioenergy potential of eight common aquatic weeds. Biol Wastes 34, 359–366. https://doi.org/10.1016/0269-7483(90)90036-R

    Article  CAS  Google Scholar 

  38. Chen X, Chen Z, Wang X, Huo C, Hu Z, Xiao B, Hu M (2016) Application of ADM1 for modeling of biogas production from anaerobic digestion of Hydrilla verticillata. Bioresour Technol 211:101–107. https://doi.org/10.1016/j.biortech.2016.03.002

    Article  CAS  PubMed  Google Scholar 

  39. Kobayashi N, Noel EA, Barnes A, Watson A, Rosenberg JN, Erickson G, Oyler GA (2013) Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresour Technol 150:377–386. https://doi.org/10.1016/j.biortech.2013.10.032

    Article  CAS  PubMed  Google Scholar 

  40. Moeller L, Bauer A, Wedwitschka H, Stinner W, Zehnsdorf A (2018) Crop characteristics of aquatic macrophytes for use as a substrate in anaerobic digestion plants—a study from Germany. Energies 11(11):3016. https://doi.org/10.3390/en11113016

    Article  CAS  Google Scholar 

  41. Brown D, Shi J, Li Y (2012) Comparison of solid-state to liquid anaerobic digestion of lignocellulosic feedstocks for biogas production. Bioresour Technol 124:379–386. https://doi.org/10.1016/j.biortech.2012.08.051

    Article  CAS  PubMed  Google Scholar 

  42. Herrmann C, Idler C, Heiermann M (2016) Biogas crops grown in energy crop rotations: linking chemical composition and methane production characteristics. Bioresour Technol 206:23–35. https://doi.org/10.1016/j.biortech.2016.01.058

    Article  CAS  PubMed  Google Scholar 

  43. Rabemanolontsoa H, Saka S (2012) Characterization of Lake Biwa macrophytes in their chemical composition. J Japan Inst Energy 91:621–628

    Article  CAS  Google Scholar 

  44. Yarrow M, Marín VH, Finlayson M, Tironi A, Delgado LE, Fischer F (2009) The ecology of Egeria densa planchon (liliopsida: Alismatales): a wetland ecosystem engineer. Rev Chil Hist Nat 82:299–313. https://doi.org/10.4067/S0716-078X2009000200010

    Article  Google Scholar 

  45. Zehnsdorf A, Hussner A, Eismann F, Rönicke H, Melzer A (2015) Management options of invasive Elodea nuttallii and Elodea canadensis. Limnologica 51:110–117. https://doi.org/10.1016/j.limno.2014.12.010

    Article  Google Scholar 

  46. Zhang H, Fangel JU, Willats WGT, Selig MJ, Lindedam J, Jørgensen H, Felby C (2014) Assessment of leaf/stem ratio in wheat straw feedstock and impact on enzymatic conversion. GCB Bioenergy 6:90–96. https://doi.org/10.1111/gcbb.12060

    Article  CAS  Google Scholar 

  47. Rueda JA, Ortega-Jiménez E, Hernández-Garay A, Enríquez-Quiroz JF, Guerrero-Rodríguez JD, Quero-Carrillo AR (2016) Growth, yield, fiber content and lodging resistance in eight varieties of Cenchrus purpureus (Schumach.) Morrone intended as energy crop. Biomass Bioenergy 88:59–65. https://doi.org/10.1016/j.biombioe.2016.03.007

    Article  CAS  Google Scholar 

  48. Tonon G, Magnus BS, Mohedano RA, Leite WRM, da Costa RHR, Filho PB (2017) Pre treatment of duckweed biomass, obtained from wastewater treatment ponds, for biogas production. Waste and Biomass Valorization 8:2363–2369. https://doi.org/10.1007/s12649-016-9800-1

    Article  CAS  Google Scholar 

  49. Lambert E, Dutartre A, Coudreuse J, Haury J (2010) Relationships between the biomass production of invasive Ludwigia species and physical properties of habitats in France. Hydrobiologia 656:173–186. https://doi.org/10.1007/s10750-010-0440-3

    Article  Google Scholar 

  50. Aloo P, Ojwang W, Omondi R, Njiru JM, Oyugi D (2013) A review of the impacts of invasive aquatic weeds on the biodiversity of some tropical water bodies with special reference to Lake Victoria (Kenya). Biodivers J 4:471–482

    Google Scholar 

  51. Chappuis E, Gacia E, Ballesteros E (2014) Environmental factors explaining the distribution and diversity of vascular aquatic macrophytes in a highly heterogeneous Mediterranean region. Aquat Bot 113:72–82. https://doi.org/10.1016/j.aquabot.2013.11.007

    Article  Google Scholar 

  52. Copeland RS, Nkubaye E, Nzigidahera B, Epler JH, Cuda JP, Overholt WA (2012) The diversity of Chironomidae (Diptera) associated with Hydrilla verticillata (Alismatales: Hydrocharitaceae) and other aquatic macrophytes in Lake Tanganyika. Burundi Ann Entomol Soc Am 105:206–224. https://doi.org/10.1603/an11076https://doi.org/10.1016/j.biortech.2014.10.115

    Article  Google Scholar 

  53. Sharip Z, Schooler SS, Hipsey MR, Hobbs RJ (2012) Eutrophication, agriculture and water level control shift aquatic plant communities from floating-leaved to submerged macrophytes in Lake Chini. Malaysia Biol Invasions 14:1029–1044. https://doi.org/10.1007/s10530-011-0137-1

    Article  Google Scholar 

  54. Gunnarsson CC, Petersen CM (2007) Water hyacinths as a resource in agriculture and energy production: a literature review. Waste Manag 27:117–129. https://doi.org/10.1016/j.wasman.2005.12.011

    Article  PubMed  Google Scholar 

Download references

Funding

This study was partially supported by “The Environment Research and Technology Development Fund” from the Ministry of the Environment, Japan (4-1406, 2014–2016), the Lake Biwa Policy Division, Department of Lake Biwa and the Environment, Shiga Prefectural Government, and the Ohmi Environment Conservation Foundation for the donation of macrophytes, and the Yokohama Hokubu Sludge Treatment Center for the donation of anaerobic sludge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Fujiwara.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PPTX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujiwara, M., Koyama, M., Akizuki, S. et al. Seasonal Changes in the Chemical Composition and Anaerobic Digestibility of Harvested Submerged Macrophytes. Bioenerg. Res. 13, 683–692 (2020). https://doi.org/10.1007/s12155-019-10082-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-019-10082-x

Keywords

Navigation