Skip to main content

Advertisement

Log in

Co-production of Monosaccharides and Hydrochar from Green Macroalgae Ulva (Chlorophyta) sp. with Subcritical Hydrolysis and Carbonization

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Subcritical water hydrolysis and carbonization of the biomass are an emerging green technology for seaweed biomass processing. In this work, a novel approach for co-generation of two energy streams from seaweed biomass (fermentable sugars and solid hydrochar) with subcritical water from a green macroalgae Ulva sp. was developed. It was found that for the released of glucose, xylose, rhamnose, fructose, and galactose, the process temperature is the most significant parameter, followed by salinity, solid load, and treatment time. For the formation of fermentation inhibitor 5-hydroxymethylfurfural (5-HMF), temperature also was the most important parameter, followed by residence time, salinity, and solid load. The optimum parameters for maximal release of total sugars under minimum formation of 5-HMF were 170 °C (800 kPa abs.), 5% solid loading, 40 min residence time, and 100% salinity. The hydrochar yield was 19.4% and hydrochar high heating value was 20.2 ± 1.31 MJ kg−1. These results provide new detailed information on the subcritical hydrolysis and carbonization of Ulva sp. biomass and show co-production of fermentable monosaccharides and hydrochar.

Co-production of hydrolysate and hydrochar from green seaweed Ulva sp. with hydrothermal treatment

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fernand F, Israel A, Skjermo J, Wichard T, Timmermans KR, Golberg A (2016) Offshore macroalgae biomass for bioenergy production: environmental aspects, technological achievements and challenges. Renew Sustain Energy Rev 75:35–45. https://doi.org/10.1016/j.rser.2016.10.046

    Article  CAS  Google Scholar 

  2. Vitkin E, Golberg A, Yakhini Z (2015) BioLEGO — a web-based application for biorefinery design and evaluation of serial biomass fermentation. Technology 1–10. https://doi.org/10.1142/S2339547815400038

    Article  Google Scholar 

  3. Jiang R, Linzon Y, Vitkin E, Yakhini Z, Chudnovsky A, Golberg A (2016) Thermochemical hydrolysis of macroalgae Ulva for biorefinery: Taguchi robust design method. Sci Rep 6. https://doi.org/10.1038/srep27761

  4. Korzen L, Pulidindi IN, Israel A, Abelson A, Gedanken A (2015) Single step production of bioethanol from the seaweed Ulva rigida using sonication. RSC Adv 5:16223–16229. https://doi.org/10.1039/C4RA14880K

    Article  CAS  Google Scholar 

  5. Jung H, Baek G, Kim J, Shin SG, Lee C (2015) Mild-temperature thermochemical pretreatment of green macroalgal biomass: effects on solubilization, methanation, and microbial community structure. Bioresour Technol 199:326–335. https://doi.org/10.1016/j.biortech.2015.08.014

    Article  CAS  PubMed  Google Scholar 

  6. Pezoa-Conte R, Leyton A, Anugwom I, von Schoultz S, Paranko J, Mäki-Arvela P, Willför S, Muszyński M, Nowicki J, Lienqueo ME, Mikkola JP (2015) Deconstruction of the green alga Ulva rigida in ionic liquids: closing the mass balance. Algal Res 12:262–273. https://doi.org/10.1016/j.algal.2015.09.011

    Article  Google Scholar 

  7. Robin A, Golberg A (2016) Pulsed electric fields and electroporation technologies in marine macroalgae biorefineries. 1–16. https://doi.org/10.1007/978-3-319-26779-1_218-1

    Google Scholar 

  8. Robin A, Kazir M, Sack M, Israel A, Frey W, Mueller G, Livney YD, Golberg A (2018) Functional protein concentrates extracted from the green marine macroalga Ulva sp., by high voltage pulsed electric fields and mechanical press. ACS Sustain Chem Eng 6:13696–13705. https://doi.org/10.1021/acssuschemeng.8b01089

    Article  CAS  Google Scholar 

  9. Powell B. Marquez G, Takeuchi H, Hasegawa T (2015) Biogas production of biologically and chemically-pretreated seaweed, Ulva spp., under different conditions: freshwater and thalassic. J Japan Inst Energy. https://doi.org/10.3775/jie.94.1066

  10. Maneein S, Milledge JJ, Nielsen BV, Harvey PJ (2018) A review of seaweed pre-treatment methods for enhanced biofuel production by anaerobic digestion or fermentation. Fermentation. https://doi.org/10.3390/fermentation4040100

    Article  CAS  Google Scholar 

  11. Bikker P, van Krimpen MMM, van Wikselaar P, et al. (2016) Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels

  12. Ghosh S, Gnaim R, Greiserman S, Fadeev L, Gozin M, Golberg A (2019) Macroalgal biomass subcritical hydrolysates for the production of polyhydroxyalkanoate (PHA) by Haloferax mediterranei. Bioresour Technol 271:166–173. https://doi.org/10.1016/j.biortech.2018.09.108

    Article  CAS  PubMed  Google Scholar 

  13. Olajuyin AM, Yang M, Liu Y, Mu T, Tian J, Adaramoye OA, Xing J (2016) Efficient production of succinic acid from Palmaria palmata hydrolysate by metabolically engineered Escherichia coli. Bioresour Technol. 214:653–659. https://doi.org/10.1016/j.biortech.2016.04.117

    Article  CAS  PubMed  Google Scholar 

  14. Ganesh Saratale R, Kumar G, Banu R, Xia A, Periyasamy S, Dattatraya Saratale G (2018) A critical review on anaerobic digestion of microalgae and macroalgae and co-digestion of biomass for enhanced methane generation. Bioresour Technol 262:319–332

    Article  CAS  Google Scholar 

  15. Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2012) The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnol Bioeng 109:1083–1087. https://doi.org/10.1002/bit.24370

    Article  CAS  PubMed  Google Scholar 

  16. Sun ZY, Tang YQ, Morimura S, Kida K (2013) Reduction in environmental impact of sulfuric acid hydrolysis of bamboo for production of fuel ethanol. Bioresour Technol 128:87–93. https://doi.org/10.1016/j.biortech.2012.10.082

    Article  CAS  PubMed  Google Scholar 

  17. Cocero MJ, Cabeza Á, Abad N, Adamovic T, Vaquerizo L, Martínez CM, Pazo-Cepeda MV (2018) Understanding biomass fractionation in subcritical & supercritical water. J Supercrit Fluids 133:550–565. https://doi.org/10.1016/J.SUPFLU.2017.08.012

    Article  CAS  Google Scholar 

  18. Meillisa A, Woo H-CC, Chun B-SS (2015) Production of monosaccharides and bio-active compounds derived from marine polysaccharides using subcritical water hydrolysis. 171:70–77. https://doi.org/10.1016/j.foodchem.2014.08.097

    Article  CAS  Google Scholar 

  19. Mutripah S, Meinita MDN, Kang JY, Jeong GT, Susanto AB, Prabowo RE, Hong YK (2014) Bioethanol production from the hydrolysate of Palmaria palmata using sulfuric acid and fermentation with brewer’s yeast. J Appl Phycol 26:687–693. https://doi.org/10.1007/s10811-013-0068-6

    Article  CAS  Google Scholar 

  20. Bergius FCR (1913) Anwendung hoher Drucke bei chemischen Vorgängen und die Nachbildung des Entstehungsprozesses der Steinkohle. Halle a.S., Knapp

  21. Wang T, Zhai Y, Zhu Y, Li C, Zeng G (2018) A review of the hydrothermal carbonization of biomass waste for hydrochar formation: process conditions, fundamentals, and physicochemical properties. Renew Sust Energy Rev 90:223–247. https://doi.org/10.1016/j.rser.2018.03.071

    Article  CAS  Google Scholar 

  22. Liu Z, Quek A, Hoekman SK et al (2012) Thermogravimetric investigation of hydrochar-lignite co-combustion. Bioresour Technol 123:646–652. https://doi.org/10.1016/j.biortech.2012.06.063

    Article  CAS  PubMed  Google Scholar 

  23. Choi W-Y, Kang D-H, Lee H-Y (2013) Enhancement of the saccharification yields of Ulva pertusa kjellmann and rape stems by the high-pressure steam pretreatment process. Biotechnol Bioprocess Eng 18:728–735. https://doi.org/10.1007/s12257-013-0033-x

    Article  CAS  Google Scholar 

  24. Daneshvar S, Salak F, Ishii T, Otsuka K (2012) Application of subcritical water for conversion of macroalgae to value-added materials. Ind Eng Chem Res 51:77–84. https://doi.org/10.1021/ie201743x

    Article  CAS  Google Scholar 

  25. Smith AM, Ross AB (2016) Production of bio-coal, bio-methane and fertilizer from seaweed via hydrothermal carbonisation. Algal Res 16:1–11. https://doi.org/10.1016/j.algal.2016.02.026

    Article  Google Scholar 

  26. Neveux N, Yuen AKL, Jazrawi C, Magnusson M, Haynes BS, Masters AF, Montoya A, Paul NA, Maschmeyer T, de Nys R (2014) Biocrude yield and productivity from the hydrothermal liquefaction of marine and freshwater green macroalgae. Bioresour Technol 155:334–341. https://doi.org/10.1016/j.biortech.2013.12.083

    Article  CAS  PubMed  Google Scholar 

  27. Zhou D, Zhang L, Zhang S, Fu H, Chen J (2010) Hydrothermal liquefaction of macroalgae enteromorpha prolifera to bio-oil. Energy Fuels 24:4054–4061. https://doi.org/10.1021/ef100151h

    Article  CAS  Google Scholar 

  28. Park J-N, Shin T-S, Lee J-H, Chun B-S (2012) Production of reducing sugars from Laminaria japonica by subcritical water hydrolysis. APCBEE Proc 2:17–21. https://doi.org/10.1016/j.apcbee.2012.06.004

    Article  CAS  Google Scholar 

  29. Bobleter O, Schwald W, Concin R, Binder H (1986) Hydrolysis of cellobiose in dilute sulfuric acid and under hydrothermal conditions. J Carbohydr Chem 5:387–399. https://doi.org/10.1080/07328308608058843

    Article  CAS  Google Scholar 

  30. Lehahn Y, Ingle KN, Golberg A (2016) Global potential of offshore and shallow waters macroalgal biorefineries to provide for food, chemicals and energy: feasibility and sustainability. Algal Res 17:150–160. https://doi.org/10.1016/j.algal.2016.03.031

    Article  Google Scholar 

  31. Robin A, Chavel P, Chemodanov A, Israel A, Golberg A (2017) Diversity of monosaccharides in marine macroalgae from the Eastern Mediterranean Sea. Algal Res 28:118–127. https://doi.org/10.1016/j.algal.2017.10.005

    Article  Google Scholar 

  32. Chemodanov A, Robin A, Golberg A (2017) Design of marine macroalgae photobioreactor integrated into building to support seagriculture for biorefinery and bioeconomy. Bioresour Technol 241:1084–1093. https://doi.org/10.1016/j.biortech.2017.06.061

    Article  CAS  PubMed  Google Scholar 

  33. Aida TM, Tajima K, Watanabe M, Saito Y, Kuroda K, Nonaka T, Hattori H, Smith RL Jr, Arai K (2007) Reactions of d-fructose in water at temperatures up to 400 °C and pressures up to 100 MPa. J Supercrit Fluids 42:110–119. https://doi.org/10.1016/j.supflu.2006.12.017

    Article  CAS  Google Scholar 

  34. Rao RS, Kumar CG, Prakasham RS, Hobbs PJ (2008) The Taguchi methodology as a statistical tool for biotechnological applications: a critical appraisal. Biotechnol J 3:510–523

    Article  CAS  Google Scholar 

  35. Rao RS, Prakasham RS, Prasad KK, et al. (2004) Xylitol production by Candida sp.: parameter optimization using Taguchi approach. Process Biochem. https://doi.org/10.1016/S0032-9592(03)00207-3

    Article  CAS  Google Scholar 

  36. Overend RP, Chornet E, Gascoigne J (1987) Fractionation of lignocellulosics by steam-aqueous pretreatments. Philos Trans R Soc London A Math Phys Eng Sci 321:523–536. https://doi.org/10.1098/rsta.1987.0029

    Article  CAS  Google Scholar 

  37. Peleteiro S, Garrote G, Santos V, Parajó JC (2014) Conversion of hexoses and pentoses into furans in an ionic liquid. Afinidad 71:202–206

    CAS  Google Scholar 

  38. Bikker P, Krimpen MM, Wikselaar P et al (2016) Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. J Appl Phycol 28:3511–3525. https://doi.org/10.1007/s10811-016-0842-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Almeida JRM, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF (2007) Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol 82:340–349

    Article  CAS  Google Scholar 

  40. Tsubaki S, Oono K, Hiraoka M, Ueda T, Onda A, Yanagisawa K, Azuma JI (2014) Hydrolysis of green-tide forming Ulva spp. by microwave irradiation with polyoxometalate clusters. Green Chem 16:2227–2233. https://doi.org/10.1039/C3GC42027B

    Article  CAS  Google Scholar 

  41. El Harchi M, Fakihi Kachkach FZ, El Mtili N (2018) Optimization of thermal acid hydrolysis for bioethanol production from Ulva rigida with yeast Pachysolen tannophilus. S Afr J Bot 115:161–169. https://doi.org/10.1016/J.SAJB.2018.01.021

    Article  Google Scholar 

  42. Kim DH, Lee SB, Jeong GT (2014) Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis. Bioresour Technol 161:348–353. https://doi.org/10.1016/j.biortech.2014.03.078

    Article  CAS  PubMed  Google Scholar 

  43. Álvarez I, Condón S, Raso J (2006) Microbial inactivation by pulsed electric fields. pp 97–129

    Chapter  Google Scholar 

  44. Cemazar M, Sersa G, Frey W, Miklavcic D, Teissié J (2018) Recommendations and requirements for reporting on applications of electric pulse delivery for electroporation of biological samples. Bioelectrochemistry 122:69–76. https://doi.org/10.1016/j.bioelechem.2018.03.005

    Article  CAS  PubMed  Google Scholar 

  45. Binder JB, Raines RT (2010) Fermentable sugars by chemical hydrolysis of biomass. Proc Natl Acad Sci 107:4516–4521. https://doi.org/10.1073/pnas.0912073107

    Article  PubMed  Google Scholar 

  46. Lü X, Saka S (2012) New insights on monosaccharides’ isomerization, dehydration and fragmentation in hot-compressed water. J Supercrit Fluids 61:146–156. https://doi.org/10.1016/j.supflu.2011.09.005

    Article  CAS  Google Scholar 

  47. Zhang B, Von Keitz M, Valentas K (2008) Thermal effects on hydrothermal biomass liquefaction. Appl Biochem Biotechnol 147:143–150. https://doi.org/10.1007/s12010-008-8131-5

    Article  CAS  PubMed  Google Scholar 

  48. Boie W (1953) Fuel technology calculations. Energietechnik 3

  49. Grummel ES, Davies I (1933) A new method of calculating the calorific value of a fuel from its ultimate analysis. Fuel 12:199–203

    CAS  Google Scholar 

  50. Xu Q, Qian Q, Quek A, Ai N, Zeng G, Wang J (2013) Hydrothermal carbonization of macroalgae and the effects of experimental parameters on the properties of hydrochars. ACS Sustain Chem Eng 1:1092–1101. https://doi.org/10.1021/sc400118f

    Article  CAS  Google Scholar 

  51. Haykiri-Acma H, Yaman S, Kucukbayrak S (2013) Production of biobriquettes from carbonized brown seaweed. Fuel Process Technol 106:33–40. https://doi.org/10.1016/j.fuproc.2012.06.014

    Article  CAS  Google Scholar 

  52. Sun Y, Zhang JP, Wen C, Zhang L (2016) An enhanced approach for biochar preparation using fluidized bed and its application for H2S removal. Chem Eng Process Process Intensif 104:1–12. https://doi.org/10.1016/j.cep.2016.02.006

    Article  CAS  Google Scholar 

  53. Coates J (2006) Interpretation of infrared spectra, a practical approach. In: Encyclopedia of analytical chemistry

  54. Pourhosseini SEM, Norouzi O, Naderi HR (2017) Study of micro/macro ordered porous carbon with olive-shaped structure derived from Cladophora glomerata macroalgae as efficient working electrodes of supercapacitors. Biomass and Bioenergy 107:287–298. https://doi.org/10.1016/J.BIOMBIOE.2017.10.025

    Article  CAS  Google Scholar 

  55. Taskin E, de Castro BC, Allegretta I et al (2019) Multianalytical characterization of biochar and hydrochar produced from waste biomasses for environmental and agricultural applications. Chemosphere 233:422–430. https://doi.org/10.1016/j.chemosphere.2019.05.204

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors sincerely thank Vered Holdengreber from the Electron Microscopy Unit, Inter-Departmental Research Facility Unit, Faculty of Life Sciences, Tel Aviv University, for the help with SEM.

Funding

This study was financially supported by the Israeli Ministry of Energy, Infrastructures and Water Resources (grant no. 215-11-032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Golberg.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Figure S1.

Temperature profile inside the reactor for two experimental blocks. The bottom panel is zoon in into the high-temperature time. a. Experimental block 1. b. Experimental block 2. (PNG 1324 kb)

High resolution image (TIF 261 kb)

Figure S2.

The impact of the severity factor (R0) on the total monosaccharides and HMF yields. (PNG 373 kb)

High resolution image (TIF 81 kb)

Figure S3.

FT-IR spectra. (blue spectrum): dried untreated Ulva sp. biomass and (black spectrum): hydrochar. (PNG 650 kb)

High resolution image (TIF 164 kb)

Figure S4.

TG and DTG thermograms. (ablack TG thermogram): Ulva biomass measured under N2 atmosphere; (a, blue TG thermogram): hydrochar measured under N2 atmosphere; (b, black TG thermogram): Ulva biomass measured under air atmosphere; (b, blue TG thermogram): hydrochar measured under air atmosphere; (c, black DTG thermogram): Ulva biomass measured under N2 atmosphere; (c, blue DTG thermogram): hydrochar measured under N2 atmosphere; (d, black DTG thermogram): Ulva biomass measured under air atmosphere; (d, blue DTG thermogram): hydrochar measured under air atmosphere. (PNG 921 kb)

High resolution image (TIF 180 kb)

Figure S5.

DSC thermograms. (ablack thermogram): Ulva biomass measured under N2 atmosphere; (ablue thermogram): hydrochar measured under N2 atmosphere; (b, black thermogram): Ulva biomass measured under air atmosphere; (b, blue thermogram): hydrochar measured under air atmosphere. (PNG 710 kb)

High resolution image (TIF 137 kb)

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greiserman, S., Epstein, M., Chemodanov, A. et al. Co-production of Monosaccharides and Hydrochar from Green Macroalgae Ulva (Chlorophyta) sp. with Subcritical Hydrolysis and Carbonization. Bioenerg. Res. 12, 1090–1103 (2019). https://doi.org/10.1007/s12155-019-10034-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-019-10034-5

Keywords

Navigation