Skip to main content

Advertisement

Log in

Inter-Annual Precipitation Variability Decreases Switchgrass Productivity from Arid to Mesic Environments

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Cellulosic biofuels are an important source of renewable biomass within the alternative energy portfolio. Switchgrass (Panicum virgatum L.), a perennial C4 grass native to North America, is widely studied as a biofuel feedstock for its consistently high yields and minimal input requirements. The influences of precipitation amount and temporal variability on the fertilizer response of switchgrass productivity are not fully understood. Moreover, global climate models predict changes in rainfall patterns towards lower and increasingly variable soil water availability in several productive areas worldwide, which may impact net primary production of biofuel crops. We conducted a meta-analysis of aboveground net primary production of switchgrass from 48 publications encompassing 82 different locations, 11 soil types, 52 switchgrass cultivars, fertilizer inputs between 0 to 896 kg N ha−1 year−1, and 1 to 6 years of annual productivity measures repeated on the same stand. Productivity of the lowland ecotype doubled with N rates > 131 kg N ha−1 year−1, but upland ecotype productivity increased only by 50%. Results showed an optimum N rate of 30 to 60 kg N ha−1 year−1 for both ecotypes, after which biomass gain per unit of N added decreased. Growing season precipitation (GSPPT) and inter-annual precipitation variability (inter-PPTvar) affected both ecotypes similarly. Long-term mean annual precipitation (MAP) differentially affected lowland and upland productivity, depending on the N level. Productivity responses to MAP and GSPPT were similar for both upland and lowland ecotypes at none or low N rates. When N increased beyond 60 kg N ha−1 year−1, lowland cultivars had a greater growth response to MAP than uplands. Productivity increased with increasing GSPPT and MAP and had a positive linear response to MAP ranging from 600 to 1200 mm year−1. One third of the variability in switchgrass production was accounted for by inter-PPTvar. After accounting for MAP, sites with higher inter-PPTvar had lower switchgrass productivity than sites with lower inter-PPTvar. Increased inter-annual variation in precipitation reduced production of both ecotypes. Predicted changes in the amount and timing of precipitation thus likely will exert greater influence on production of upland than lowland ecotypes of switchgrass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Howarth RW, Bringezu S, Martinelli LA, Santoro R, Messem D, Sala OE (2009) Introduction: biofuels and the environment in the 21st century. In: Howarth RW, Bringezu S (eds) Biofuels: environmental consequences and interactions with changing land use. Proceedings of the Scientific Committee on Problems of the Environment (SCOPE) International Biofuels Project Rapid Assessment, Gummersbach Germany. Cornell University, Ithaca, pp 15–36

    Google Scholar 

  2. Knoll JE, Anderson WF, Strickland TC, Hubbard RK, Malik R (2012) Low-input production of biomass from perennial grasses in the Coastal Plain of Georgia, USA. BioEnergy Res 5(1):206–214. https://doi.org/10.1007/s12155-011-9122-x

    Article  Google Scholar 

  3. Kiniry JR, Anderson LC, Johnson MVV, Behrman KD, Brakie M, Burner D, Cordsiemon RL, Fay PA, Fritschi FB, Houx JH III, Hawkes C, Juenger T, Kaiser J, Keitt TH, Lloyd-Reilley J, Maher S, Raper R, Scott A, Shadow A, West C, Wu Y, Zibilske L (2013) Perennial biomass grasses and the Mason-Dixon line: comparative productivity across latitudes in the southern Great Plains. BioEnergy Res 6(1):276–291. https://doi.org/10.1007/s12155-012-9254-7

    Article  Google Scholar 

  4. IPCC (2007) Climate Change 2007: the physical science basis. In: Solomon S, Qin D, Manning M et al (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge 996 pages

    Google Scholar 

  5. Wang DAN, Lebauer DS, Dietze MC (2010) A quantitative review comparing the yield of switchgrass in monocultures and mixtures in relation to climate and management factors. GCB Bioenergy 2(1):16–25. https://doi.org/10.1111/j.1757-1707.2010.01035.x

    Article  Google Scholar 

  6. Fay PA, Carlisle JD, Knapp AK, Blair JM, Collins SL (2003) Productivity responses to altered rainfall patterns in a C 4-dominated grassland. Oecologia 137(2):245–251

    Article  PubMed  Google Scholar 

  7. Gherardi LA, Sala OE (2015) Enhanced precipitation variability decreases grass- and increases shrub-productivity. Proc Natl Acad Sci 112(41):12735–12740. https://doi.org/10.1073/pnas.1506433112

    Article  PubMed  CAS  Google Scholar 

  8. McLaughlin SB, Kszos LA (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28(6):515–535

    Article  Google Scholar 

  9. Wright L, Turhollow A (2010) Switchgrass selection as a “model” bioenergy crop: a history of the process. Biomass Bioenergy 34(6):851–868

    Article  Google Scholar 

  10. Casler MD, Vogel KP, Taliaferro CM, Wynia RL (2004) Latitudinal adaptation of switchgrass populations. Crop Sci 44(1):293–303

    Article  Google Scholar 

  11. Porter CL (1966) An analysis of variation between upland and lowland switchgrass, Panicum virgatum L., in Central Oklahoma. Ecology 47(6):980–992. https://doi.org/10.2307/1935646

    Article  Google Scholar 

  12. Wullschleger SD, Davis EB, Borsuk ME, Gunderson CA, Lynd LR (2010) Biomass production in switchgrass across the United States: database description and determinants of yield. Agron J 102(4):1158–1168

    Article  Google Scholar 

  13. Aspinwall MJ, Lowry DB, Taylor SH, Juenger TE, Hawkes CV, Johnson MV, Kiniry JR, Fay PA (2013) Genotypic variation in traits linked to climate and aboveground productivity in a widespread C(4) grass: evidence for a functional trait syndrome. New Phytol 199(4):966–980. https://doi.org/10.1111/nph.12341

    Article  PubMed  CAS  Google Scholar 

  14. LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89(2):371–379

    Article  PubMed  Google Scholar 

  15. Yahdjian L, Gherardi L, Sala OE (2011) Nitrogen limitation in arid-subhumid ecosystems: a meta-analysis of fertilization studies. J Arid Environ 75(8):675–680. https://doi.org/10.1016/j.jaridenv.2011.03.003

    Article  Google Scholar 

  16. Fay PA, Prober SM, Harpole WS, Knops JMH, Bakker JD, Borer ET, Lind EM, MacDougall AS, Seabloom EW, Wragg PD, Adler PB, Blumenthal DM, Buckley YM, Chu C, Cleland EE, Collins SL, Davies KF, Du G, Feng X, Firn J, Gruner DS, Hagenah N, Hautier Y, Heckman RW, Jin VL, Kirkman KP, Klein J, Ladwig LM, Li Q, McCulley RL, Melbourne BA, Mitchell CE, Moore JL, Morgan JW, Risch AC, Schütz M, Stevens CJ, Wedin DA, Yang LH (2015) Grassland productivity limited by multiple nutrients. Nat Plants 1(7):15080. https://doi.org/10.1038/nplants.2015.80

    Article  PubMed  CAS  Google Scholar 

  17. Lambers H, Chapin FS, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer, New York 604 pages

    Book  Google Scholar 

  18. Yang J, Worley E, Wang M, Lahner B, Salt DE, Saha M, Udvardi M (2009) Natural variation for nutrient use and remobilization efficiencies in switchgrass. BioEnergy Res 2(4):257–266. https://doi.org/10.1007/s12155-009-9055-9

    Article  Google Scholar 

  19. Robertson GP, Hamilton SK, Del Grosso SJ, Parton WJ (2011) The biogeochemistry of bioenergy landscapes: carbon, nitrogen, and water considerations. Ecol Appl 21(4):1055–1067. https://doi.org/10.1890/09-0456.1

    Article  PubMed  Google Scholar 

  20. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320(5878):889–892

    Article  PubMed  CAS  Google Scholar 

  21. Schmer MR, Liebig MA, Hendrickson JR, Tanaka DL, Phillips RL (2012) Growing season greenhouse gas flux from switchgrass in the northern great plains. Biomass Bioenergy 45:315–319. https://doi.org/10.1016/j.biombioe.2012.05.026

    Article  CAS  Google Scholar 

  22. Wedin DA, Tilman D (1990) Species effects on nitrogen cycling: a test with perennial grasses. Oecologia 84(4):433–441. https://doi.org/10.1007/bf00328157

    Article  PubMed  Google Scholar 

  23. Butler T, Muir J, Huo C, Guretzky J (2013) Switchgrass biomass and nitrogen yield with over-seeded cool-season forages in the southern Great Plains. BioEnergy Res 6(1):44–52. https://doi.org/10.1007/s12155-012-9225-z

    Article  Google Scholar 

  24. Knapp AK, Smith MD (2001) Variation among biomes in temporal dynamics of aboveground primary production. Science 291(5503):481–484

    Article  PubMed  CAS  Google Scholar 

  25. Sala OE, Gherardi LA, Reichmann LG, Jobbagy EG, Peters DP (2012) Legacies of precipitation fluctuations on primary production: theory and data synthesis. Proc R Soc Lond Ser B Biol Sci 367:3135–3144

    Google Scholar 

  26. Ray DK, Gerber JS, MacDonald GK, West PC (2015) Climate variation explains a third of global crop yield variability. Nat Commun 6:5989. https://doi.org/10.1038/ncomms6989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Knapp AK, Briggs JM, Koelliker JK (2001) Frequency and extent of water limitation to primary production in a mesic temperate grassland. Ecosystems 4(1):19–28

    Article  Google Scholar 

  28. Knapp AK, Fay PA, Blair JM, Collins SL, Smith MD, Carlisle JD, Harper CW, Danner BT, Lett MS, McCarron JK (2002) Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 298(5601):2202–2205

    Article  PubMed  CAS  Google Scholar 

  29. Heisler-White JL, Blair JM, Kelly EF, Harmoney K, Knapp AK (2009) Contingent productivity responses to more extreme rainfall regimes across a grassland biome. Glob Chang Biol 15(12):2894–2904. https://doi.org/10.1111/j.1365-2486.2009.01961.x

    Article  Google Scholar 

  30. Tufekcioglu A, Raich JW, Isenhart TM, Schultz RC (1998) Fine root dynamics, coarse root biomass, root distribution, and soil respiration in a multispecies riparian buffer in Central Iowa, USA. Agrofor Syst 44(2–3):163–174

    Article  Google Scholar 

  31. Kiniry JR, Tischler CR, Van Esbroeck GA (1999) Radiation use efficiency and leaf CO2 exchange for diverse C4 grasses. Biomass Bioenergy 17(2):95–112. https://doi.org/10.1016/S0961-9534(99)00036-7

    Article  Google Scholar 

  32. Mann JJ, Barney JN, Kyser GB, DiTomaso JM (2012) Root system dynamics of Miscanthus × giganteus and Panicum virgatum in response to rainfed and irrigated conditions in California. BioEnergy Res 6(2):678–687. https://doi.org/10.1007/s12155-012-9287-y

    Article  Google Scholar 

  33. Austin AT, Yahdjian L, Stark JM, Belnap J, Porporato A, Norton U, Ravetta DA, Schaeffer SM (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141(2):221–235. https://doi.org/10.1007/S00442-004-1519-1

    Article  PubMed  Google Scholar 

  34. Jin V, Haney R, Fay P, Polley W (2013) Soil type and moisture regime control microbial C and N mineralization in grassland soils more than atmospheric CO2-induced changes in litter quality. Soil Biol Biochem 58:172–180

    Article  CAS  Google Scholar 

  35. Schwinning S, Sala OE (2004) Hierarchy of responses to resource pulses in arid and semi-arid ecosystems. Oecologia 141:211–220

    Article  PubMed  Google Scholar 

  36. Reichmann LG, Sala OE, Peters DPC (2013) Water controls on nitrogen transformations and stocks in an arid ecosystem. Ecosphere 4(1):art11. https://doi.org/10.1890/es12-00263.1

    Article  Google Scholar 

  37. Parrish DJ, Fike JH (2005) The biology and agronomy of switchgrass for biofuels. Crit Rev Plant Sci 24(5–6):423–459

    Article  Google Scholar 

  38. Miesel JR, Renz MJ, Doll JE, Jackson RD (2012) Effectiveness of weed management methods in establishment of switchgrass and a native species mixture for biofuels in Wisconsin. Biomass Bioenergy 36(Journal Article):121–131. https://doi.org/10.1016/j.biombioe.2011.10.018

    Article  CAS  Google Scholar 

  39. NOAA Climate Data Online Global historical weather and climate data archive. http://www.ncdc.noaa.gov/cdo-web/-t=secondTabLink

  40. Harris I, Jones PD, Osborn TJ, Lister DH (2014) Updated high-resolution grids of monthly climatic observations—the CRU TS3.10 dataset. Int J Climatol 34(3):623–642. https://doi.org/10.1002/joc.3711

    Article  Google Scholar 

  41. R Core Team (2015) R: A language and environment for statistical computing. Version:Retrieved from http://www.R-project.org/

  42. Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, Dai B (2014) ‘lme4’ version 1.1–7. Version: retrieved from https://github.com/lme4/lme4/ http://lme4.r-forge.r-project.org/

  43. Kuznetsova A, Brockhoff PB, Christensen RHB (2016) ‘lmerTest’ Version 2.0–30. Version:

  44. Pastor J, Bridgham SD (1999) Nutrient efficiency along nutrient availability gradients. Oecologia 118(1):50–58

    Article  PubMed  CAS  Google Scholar 

  45. Graham MH (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84(11):2809–2815

    Article  Google Scholar 

  46. De Rosario-Martinez H, John Fox, R Core Team (2015) phia: post-hoc interaction analysis. R package. Version:0.2–0. Retrieved from https://github.com/heliosdrm/phia

  47. Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4(2):133–142. https://doi.org/10.1111/j.2041-210x.2012.00261.x

    Article  Google Scholar 

  48. Stout WL, Jung GA (1995) Biomass and nitrogen accumulation in switchgrass: effects of soil and environment. Agron J 87(4):663–669

    Article  Google Scholar 

  49. Lemus R, Parrish DJ, Wolf DD (2009) Nutrient uptake by ‘Alamo’ switchgrass used as an energy crop. Bioenergy Res 2(1–2):37–50

    Article  Google Scholar 

  50. Jach-Smith LC, Jackson RD (2015) Nitrogen conservation decreases with fertilizer addition in two perennial grass cropping systems for bioenergy. Agric Ecosyst Environ 204:62–71. https://doi.org/10.1016/j.agee.2015.02.006

    Article  CAS  Google Scholar 

  51. Agblevor FA, Rejaj B, Evans RJ, Johnson KD (1992) Pyrolytic analysis and catalytic upgrading of lignocellulosic materials by molecular beam mass spectrometry. In: Klass DL (ed) Energy from biomass wastes XVI. Elsevier Applied Science, Chicago, pp 767–795

    Google Scholar 

  52. Sala OE, Gherardi LA, Peters DPC (2015) Enhanced precipitation variability effects on water losses and ecosystem functioning: differential response of arid and mesic regions. Clim Chang 131(2):213–227. https://doi.org/10.1007/s10584-015-1389-z

    Article  CAS  Google Scholar 

  53. Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J, Tokgoz S, Hayes D, Yu T-H (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240

    Article  PubMed  CAS  Google Scholar 

  54. IPCC (2012) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. In: Field CB, Barros V, Stocker TF et al (eds) A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge 582 pages

    Google Scholar 

Download references

Acknowledgements

Research was funded by USDA-NIFA (2010-65615-20632). Mention of trade names or commercial products does not imply recommendation or endorsement by the USDA. We thank E. Nelson and A. Gibson for assistance with database construction. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lara G. Reichmann.

Electronic supplementary material

ESM 1

(DOCX 5189 kb)

ESM 2

(DOCX 301 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reichmann, L.G., Collins, H.P., Jin, V.L. et al. Inter-Annual Precipitation Variability Decreases Switchgrass Productivity from Arid to Mesic Environments. Bioenerg. Res. 11, 614–622 (2018). https://doi.org/10.1007/s12155-018-9922-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-018-9922-3

Keywords

Navigation