Skip to main content
Log in

Soil Microbial Community Response to Corn Stover Harvesting Under Rain-Fed, No-Till Conditions at Multiple US Locations

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Harvesting of corn stover (plant residues) for cellulosic ethanol production must be balanced with the requirement for returning plant residues to agricultural fields to maintain soil structure, fertility, crop protection, and other ecosystem services. High rates of corn stover removal can be associated with decreased soil organic matter (SOM) quantity and quality and increased highly erodible soil aggregate fractions. Limited data are available on the impact of stover harvesting on soil microbial communities which are critical because of their fundamental relationships with C and N cycles, soil fertility, crop protection, and stresses that might be imposed by climate change. Using fatty acid and DNA analyses, we evaluated relative changes in soil fungal and bacterial densities and fungal-to-bacterial (F:B) ratios in response to corn stover removal under no-till, rain-fed management. These studies were performed at four different US locations with contrasting soil-climatic conditions. At one location, residue removal significantly decreased F:B ratios. At this location, cover cropping significantly increased F:B ratios at the highest level of residue removal and thus may be an important practice to minimize changes in soil microbial communities where corn stover is harvested. We also found that in these no-till systems, the 0- to 5-cm depth interval is most likely to experience changes, and detectable effects of stover removal on soil microbial community structure will depend on the duration of stover removal, sampling time, soil type, and annual weather patterns. No-till practices may have limited the rate of change in soil properties associated with stover removal compared to more extensive changes reported at a limited number of tilled sites. Documenting changes in soil microbial communities with stover removal under differing soil-climatic and management conditions will guide threshold levels of stover removal and identify practices (e.g., no-till, cover cropping) that may mitigate undesirable changes in soil properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mann L, Tolbert V, Cushman J (2002) Potential environmental effects of corn (Zea mays L.) stover removal with emphasis on soil organic matter and erosion. Agric Ecosyst Environ 89(3):149–166. doi:10.1016/S0167-8809(01)00166-9

    Article  Google Scholar 

  2. Wilhelm WW, Johnson JMF, Hatfield JL, Voorhees WB, Linden DR (2004) Crop and soil productivity response to corn residue removal: a literature review. Agron J 96(1):1–17

    Article  Google Scholar 

  3. Wilhelm WW, Hess JR, Karlen DL, Johnson JMF, Muth DJ, Baker JM, Gollany HT, Novak JM, Stott DE, Varvel GE (2010) REVIEW: Balancing limiting factors & economic drivers for sustainable Midwestern US agricultural residue feedstock supplies. Ind Biotechnol 6(5):271–287

    Article  Google Scholar 

  4. Graham RL, Nelson R, Sheehan J, Perlack RD, Wright LL (2007) Current and potential US corn stover supplies. Agron J 99:1–11

    Article  Google Scholar 

  5. Wilhelm WW, Johnson JM, Karlen DL, Lightle DT (2007) Corn stover to sustain soil organic carbon further constrains biomass supply. Agron J 99(6):1665–1667

    Article  CAS  Google Scholar 

  6. Blanco-Canqui H, Lal R (2009) Corn stover removal for expanded uses reduces soil fertility and structural stability. Soil Sci Soc Am J 73(2):418–426

    Article  CAS  Google Scholar 

  7. Karlen DL, Varvel GE, Johnson JMF, Baker JM, Osborne SL, Novak JM, Adler PR, Roth GW, Birrell SJ (2011) Monitoring soil quality to assess the sustainability of harvesting corn stover. Agron J 103(1):288–295

    Article  CAS  Google Scholar 

  8. Hammerbeck AL, Stetson SJ, Osborne SL, Schumacher TE, Pikul JL (2012) Corn residue removal impact on soil aggregates in a no-till corn/soybean rotation. Soil Sci Soc Am J 76(4):1390–1398. doi:10.2136/sssaj2011.0421

    Article  CAS  Google Scholar 

  9. Stetson SJ, Osborne SL, Schumacher TE, Eynard A, Chilom G, Rice J, Nichols KA, Pikul JL (2012) Corn residue removal impact on topsoil organic carbon in a corn–soybean rotation. Soil Sci Soc Am J 76(4):1399–1406. doi:10.2136/sssaj2011.0420

    Article  CAS  Google Scholar 

  10. Moebius-Clune BN, Van Es HM, Idowu OJ, Schindelbeck RR, Moebius-Clune DJ, Wolfe DW, Abawi GS, Thies JE, Gugino BK, Lucey R (2008) Long-term effects of harvesting maize stover and tillage on soil quality. Soil Sci Soc Am J 72(4):960–969

    Article  CAS  Google Scholar 

  11. Johnson JMF, Acosta-Martinez V, Cambardella CA, Barbour NW (2013) Crop and soil responses to using corn stover as a bioenergy feedstock: observations from the northern US corn belt. Agriculture 3:71–89

    Article  Google Scholar 

  12. Halpern MT, Whalen JK, Madramootoo CA (2010) Long-term tillage and residue management influences soil carbon and nitrogen dynamics. Soil Sci Soc Am J 74(4):1211–1217. doi:10.2136/sssaj2009.0406

    Article  CAS  Google Scholar 

  13. Spedding TA, Hamel C, Mehuys GR (2004) Soil microbial dynamics in maize-growing soil under different tillage and residue management systems. Soil Biol Biochem 36:499–512

    Article  CAS  Google Scholar 

  14. Sheibani S, Yanni SF, Wilhelm R, Whalen JK, Whyte LG, Greer CW, Madramootoo CA (2013) Soil bacteria and archaea found in long-term corn (Zea mays L.) agroecosystems in Quebec, Canada. Can J Soil Sci 93(1):45–57. doi:10.4141/cjss2012-040

    Article  CAS  Google Scholar 

  15. Altieri MA (1999) The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74:19–31

    Article  Google Scholar 

  16. Van der Heijden MGA, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11(3):296–310. doi:10.1111/j.1461-0248.2007.01139.x

    Article  PubMed  Google Scholar 

  17. Nielsen UN, Ayres E, Wall DH, Bardgett RD (2010) Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity-function relationships. Europ J Soil Sci 62:105–116

    Article  CAS  Google Scholar 

  18. Carney KM, Hungate BA, Drake GR, Megonigal JP (2007) Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc Natl Acad Sci 104:4990–4995

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Chung H, Zak DR, Reich PB, Ellsworth DS (2007) Plant species richness, elevated CO2, and atmospheric nitrogen deposition alter soil microbial community composition and function. Global Change Biol 13(5):980–989

    Article  Google Scholar 

  20. Pritchard SG (2011) Soil organisms and global climate change. Plant Pathology 60:82–89

    Article  Google Scholar 

  21. Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304(5677):1629–1633. doi:10.1126/science.1094875

    Article  PubMed  CAS  Google Scholar 

  22. Bailey VL, Smith JL, Bolton H (2003) Novel antibiotics as inhibitors for the selective respiratory inhibition method of measuring fungal:bacteria ratios in soil. Biol Fert Soils 38:154–160

    Article  CAS  Google Scholar 

  23. Bardgett RD, McAlister E (1999) The measurement of fungal:bacterial biomass ratios as an indicator of ecosystem self-regulation in temperate meadow grasslands. Biol Fert Soils 29:282–290

    Article  Google Scholar 

  24. Six J, Frey S, Thiet R, Batten K (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70(2):555–569

    Article  CAS  Google Scholar 

  25. Bloem J, Schouten AJ, Sorensen SJ, Rutgers M, van der Werf A, Breure AM (2006) Monitoring and evaluating soil quality. In: Bloem J, Hopkins DW, Benedetti A (eds) Microbiological methods for assessing soil quality. CABI, Wallingford, pp 23–49

    Google Scholar 

  26. de Vries FT, Bloem J, Quirk H, Stevens CJ, Bol R, Bardgett RD (2012) Extensive management promotes plant and microbial nitrogen retention in temperate grassland. PLoS ONE 7(12):e51201

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. de Vries FT, Thébault E, Liiri M, Birkhofer K, Tsiafouli MA, Bjørnlund L, Jørgensen HB, Brady MV, Christensen S, de Ruiter PC (2013) Soil food web properties explain ecosystem services across European land use systems. Proc Natl Acad Sci 110(35):14296–14301

    Article  PubMed Central  PubMed  Google Scholar 

  28. Karlen DL (2010) Corn stover feedstock trials to support predictive modeling. Glob Change Biol Bioenergy 2:233–247

    Article  Google Scholar 

  29. Fierer N, Jackson JA, Vilgalys R, Jackson RB (2005) Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microbiol 71:4117–4120

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Varvel GE, Vogel KP, Mitchell RB, Follett R, Kimble J (2008) Comparison of corn and switchgrass on marginal soils for bioenergy. Biomass Bioenerg 32(1):18–21

    Article  CAS  Google Scholar 

  31. Follett RF, Vogel KP, Varvel GE, Mitchell RB, Kimble J (2012) Soil carbon sequestration by switchgrass and no-till maize grown for bioenergy. BioEnergy Res 5(4):866–875

    Article  CAS  Google Scholar 

  32. Grigera MS, Drijber RA, Eskridge KM, Wienhold BJ (2006) Soil microbial biomass relationships with organic matter fractions in a Nebraska corn field mapped using apparent electrical conductivity. Soil Sci Soc Am J 70:1480–1488

    Article  CAS  Google Scholar 

  33. Frostegard A, Baath E (1996) The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Biol Fert Soils 22:59–65

    Article  Google Scholar 

  34. Kroppenstedt RM (1985) Fatty acid and menaquinon analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 173–199

    Google Scholar 

  35. Moore-Kucera J, Dick RP (2008) PLFA profiling of microbial community structure and season shifts in soils of a Douglas-fir chronosequence. Microb Ecol 55:500–511

    Article  PubMed  Google Scholar 

  36. Johnson JMF, Wilhelm WW, Karlen DL, Archer DW, Wienhold B, Lightle DT, Laird D, Baker J, Ochsner TE, Novak JM, Halvorson AD, Arriaga F, Barbour N (2010) Nutrient removal as a function of corn stover cutting height and cob harvest. BioEnergy Res 3(4):342–352

    Article  Google Scholar 

  37. Wilhelm WW, Johnson JMF, Lightle DT, Karlen DL, Novak JM, Barbour NW, Laird DA, Baker J, Ochsner TE, Halvorson AD, Archer DW, Arriaga F (2011) Vertical distribution of corn stover dry mass grown at several US locations. BioEnergy Res 4(1):11–21

    Article  Google Scholar 

  38. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  39. Frostegård A, Tunlid A, Bååth E (2011) Use and misuse of PLFA measurements in soils. Soil Biol Biochem 43:1621–1625

    Article  CAS  Google Scholar 

  40. Sims JL, Frederick LR (1970) Nitrogen immobilization and decomposition of corn residue in soil and sand as affected by residue particle size. Soil Sci Soc Am J 109:355–361

    Article  Google Scholar 

  41. Ambus P, Jensen ES (1997) Nitrogen mineralization and denitrification as influenced by crop residue particle size. Plant Soil 197:261–270

    Article  CAS  Google Scholar 

  42. Angers DA, Recous S (1997) Decomposition of wheat straw and rye residues as affected by particle size. Plant Soil 189:197–203

    Article  CAS  Google Scholar 

  43. Lehman RM, Osborne SL (2013) Greenhouse gas fluxes from no-till rotated corn in the upper midwest. Agric Ecosyst Environ 170:1–9

    Article  CAS  Google Scholar 

  44. Bradley K, Drijber RA, Knops J (2006) Increased N availability in grassland soils modifies their microbial communities and decreases the abundance of arbuscular mycorrhizal fungi. Soil Biol Biochem 38:1583–1595

    Article  CAS  Google Scholar 

  45. Silva MC PE, Dias ACF, Van Elsas JD, Salles JF (2012) Spatial and temporal variation of archaeal, bacterial, and fungal communities in agricultural soils. PLoS ONE 7:e51554. doi:10.1371/journal.pone.0051554

    Article  CAS  Google Scholar 

  46. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci 103(3):626–631. doi:10.1073/pnas.0507535103

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75(15):5111

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Cookson WR, Abaye DA, Marschner P, Murphy DV, Stockdale EA, Goulding KWT (2005) The contribution of soil organic matter fractions to carbon and nitrogen mineralization and microbial community size and structure. Soil Biol Biochem 37(9):1726–1737. doi:10.1016/j.soilbio.2005.02.007

    Article  CAS  Google Scholar 

  49. Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC (2009) Global patterns in belowground communities. Ecol Lett 12(11):1238–1249. doi:10.1111/j.1461-0248.2009.01360.x

    Article  PubMed  Google Scholar 

  50. Grandy AS, Strickland MS, Lauber CL, Bradford MA, Fierer N (2009) The influence of microbial communities, management, and soil texture on soil organic matter chemistry. Geoderma 150:278–286

    Article  CAS  Google Scholar 

  51. Zelles L (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol Fert Soils 29(2):111–129

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by the USDA-Agricultural Research Service (ARS) as part of the USDA-ARS-REAP (Resilient Economic Agricultural Practices) project, with additional funding provided by the North Central Regional Sun Grant Center at South Dakota State University through a grant provided by the US Department of Energy (DOE)—Office of Biomass Programs [now Bioenergy Technology Office (BETO)] under award number DE-FC36-05GO85041. Technical assistance in the field and/or lab is acknowledged from Kayla Miller, Meggan Kowalski, Kurt Dagel, Amy Christie, Don Watts, Joe Million, Jerry Martin, Ray Winans, Anthony Shriner, Warren Busscher, Chris Bauer, Aaron Bereuter, Dennis Francis, Paul Koerner, Susan Siragusa-Ortman, Jamie Pesek, Steve Swanson, David Walla, Chad Rollofson, Gary Amundson, and Nancy Barbour.

USDA Disclaimer

The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the United States Department of Agriculture or the Agricultural Research Service of any product or service to the exclusion of others that may be suitable. USDA-ARS is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Michael Lehman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehman, R.M., Ducey, T.F., Jin, V.L. et al. Soil Microbial Community Response to Corn Stover Harvesting Under Rain-Fed, No-Till Conditions at Multiple US Locations. Bioenerg. Res. 7, 540–550 (2014). https://doi.org/10.1007/s12155-014-9417-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-014-9417-9

Keywords

Navigation