Skip to main content
Log in

Genetic Diversity of Twelve Switchgrass Populations Using Molecular and Morphological Markers

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Switchgrass (Panicum virgatum L.) is a warm season, C4 perennial grass native to most of North America with numerous applications, including use as a bioenergy feedstock species. To date, no studies on genetic diversity in switchgrass have been conducted that use both molecular and morphological markers. The objectives of this study were to assess genetic diversity and determine differences among and between 12 switchgrass populations grown in New Jersey by examining both morphological and molecular characteristics, and to determine whether morphological, molecular, and/or combined data sets can detect ecotype and/or geographical differences at the population level. Twelve plants from each population were characterized with 16 switchgrass expressed sequence tag-simple sequence repeat markers (EST-SSRs) and seven morphological characters. Data was analyzed using GenAlEx and Unweighted Pair-Group Method of Averages (UPGMA) cluster analysis. Most (64%) of the molecular variation in switchgrass populations exists among individuals within populations, with lesser amounts between populations (36%). Upland and lowland populations were distinguished in all three data sets. Some eastern US and midwestern US populations were distinct in all three data sets. Similarities were observed between all three data sets indicating molecular markers may be useful for identifying morphological differences or other adaptive traits. The combined data set was the most useful in differentiating populations based on geography and found separation between midwestern and eastern upland populations. The results indicate that the combination of morphological and molecular markers may be useful in future applications such as genetic diversity studies, plant variety protection, cultivar identification, and/or identifying geographic origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

AMOVA:

Analysis of molecular variance

EST-SSR:

Expressed sequence tag-simple sequence repeats

PCA:

Principal component analysis

RAPD:

Random amplified polymorphic DNA

RFLP:

Restriction fragment length polymorphism

UPGMA:

Unweighted pair-group method of averages

References

  1. Boe A, Ross JG (1998) Registration of ‘Sunburst’ switchgrass. Crop Sci 38:540

    Article  Google Scholar 

  2. Budak H, Shearman RC, Parmakasiz I, Gaussoin RE, Riordan TP, Dweikat I (2004) Molecular characterization of Buffalograss germplasm using sequence-related amplified polymorphism markers. Theor Appl Genet 108:328–334

    Article  CAS  PubMed  Google Scholar 

  3. Casler MD (2005) Ecotypic variation among switchgrass populations from the Northern USA. Crop Sci 45:388–398

    Article  Google Scholar 

  4. Casler MD, Stendal CA, Kapich L, Vogel KP (2007) Genetic diversity, plant adaptation regions, and gene pools for switchgrass. Crop Sci 47:2261–2273

    Article  CAS  Google Scholar 

  5. Casler MD, Vogel KP, Taliaferro CM, Ehlke NJ, Berdahl JD, Brummer EC et al (2007) Latitudinal and longitudinal adaptation of switchgrass populations. Crop Sci 47:2249–2260

    Article  Google Scholar 

  6. Chistiakov DA, Hellemans B, Volckaert FAM (2006) Microsatellites and their genomic distribution, evolution, function, and applications: a review with special reference to fish genetics. Aquaculture 255:1–29

    Article  CAS  Google Scholar 

  7. Das MK, Fuentes RG, Taliaferro CM (2004) Genetic variability and trait relationships in switchgrass. Crop Sci 44:443–448

    Google Scholar 

  8. Duran LA, Blair MW, Giraldo MC, Macchiavelli R, Prophete E, Nin JC et al (2005) Morphological and molecular characterization of common bean landraces and cultivars from the Caribbean. Crop Sci 45:1320–1328

    Article  Google Scholar 

  9. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  Google Scholar 

  10. Ferguson ME, Bramel PJ, Chandra S (2004) Gene diversity among botanical varieties in peanut (Arachis hypogaea L.). Crop Sci 44:1847–1854

    Article  CAS  Google Scholar 

  11. Ferriol M, Pico B, Nuez F (2003) Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor Appl Genet 107:271–282

    Article  CAS  PubMed  Google Scholar 

  12. Franco J, Crossa J, Ribaut JM, Betran J, Warburton ML, Khairallah M (2001) A method for combining molecular markers and phenotypic attributes for classifying plant genotypes. Theor Appl Genet 103:944–952

    Article  Google Scholar 

  13. Freckmann RW, Lelongfford MG (1993) Panicum. In: Flora of North America Editorial Committee (eds) Magnoliophyta:Commelinidae (in part):Poaceae, part 2. Flora of North America North of Mexico, vol 25. New York and Oxford, pp 450–488

  14. Garcia AAF, Benchimol LL, Barbosa AMM, Geraldi IO, Souza CL, de Souza AP (2004) Comparison of RAPD, RFLP, AFLP, and SSR markers for diversity studies in tropical maize inbred lines. Genet Mol Biol 27:579–588

    Article  CAS  Google Scholar 

  15. Gomez OJ, Blair MW, Frankow-Lindberg BE, Gullberg U (2004) Molecular and phenotypic diversity of common bean landraces from Nicaragua. Crop Sci 44:1412–1418

    Article  CAS  Google Scholar 

  16. Gunter LE, Tuskan GA, Wullschleger SD (1996) Diversity among populations of switchgrass based on RAPD markers. Crop Sci 36:1017–1022

    Article  Google Scholar 

  17. Hein MA (1958) Registration of Caddo switchgrass. Agron J 50:399

    Article  Google Scholar 

  18. Hopkins AA, Taliaferro CM, Murphy CD, Christian D (1996) Chromosome number and nuclear DNA content of several switchgrass populations. Crop Sci 36:1192–1195

    Article  Google Scholar 

  19. Huff DR, Peakall R, Smouse PE (1993) RAPD variation within and among natural populations of outcrossing buffalograss (Buchloe dactyloides (Nutt.) Englem). Theor Appl Genet 86:927–934

    Article  CAS  Google Scholar 

  20. Hultquist SJ, Vogel KP, Lee DJ, Arumuganathan K, Kaeppler S (1996) Chloroplast DNA and nuclear DNA content variations among cultivars of switchgrass, Panicum virgatum L. Crop Sci 36:1049–1052

    Article  Google Scholar 

  21. Hultquist SJ, Vogel KP, Lee DJ, Arumuganathan K, Kaeppler S (1997) DNA content and chloroplast DNA polymorphisms among switchgrasses from remnant midwestern prairies. Crop Sci 37:595–598

    Article  Google Scholar 

  22. Kothera L, Richards CM, Carney SE (2007) Genetic diversity and structure in the rare Colorado endemic plant Physaria bellii Mulligan (Brassicaceae). Conserv Genet 8:1043–1050

    Article  Google Scholar 

  23. Kubik C, Sawkins M, Meyer WA, Gaut BS (2001) Genetic diversity in seven perennial ryegrass (Lolium perenne L.) cultivars based on SSR markers. Crop Sci 41:1565–1572

    Article  CAS  Google Scholar 

  24. Kubik C, Honig JA, Meyer WA, Bonos SA (2009) Genetic diversity of creeping bentgrass cultivars using SSR markers. Int Turfgrass Soc Res J 11:533–547

    Google Scholar 

  25. Kumar LS (1999) DNA markers in plant improvement: an overview. Biotechnol Adv 17:143–182

    Article  CAS  PubMed  Google Scholar 

  26. Lewandowski I, Scurlock JMO, Lindvall E, Christou M (2003) The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenerg 25:335–361

    Article  Google Scholar 

  27. Li Y, Korol AB, Fazima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007

    Article  CAS  PubMed  Google Scholar 

  28. Lu K, Kaeppler SW, Vogel K, Arumuganathan K, Lee DJ (1998) Nuclear DNA content and chromosome numbers in switchgrass. Gt Plains Res 8:269–280

    Google Scholar 

  29. Marvaldi AE, Sequeira AS, O’Brien CW, Farrell BD (2002) Molecular and morphological phylogenetics of Weevils (Coleoptera, Curculionoidea): do niche shifts accompany diversification? Syst Biol 51:761–785

    Article  PubMed  Google Scholar 

  30. Miller C, Skaradek B, Bonos, SA (2006) Notice of release of ‘Carthage’ switchgrass. USDA-NRCS Somerset, NJ and the New Jersey Agricultural Experiment Station. August 2006:1–10

  31. Miller C, Skaradek B, Bonos, SA (2007) Notice of release of ‘High Tide’ switchgrass. USDA-NRCS Cape May Courthouse, NJ and the New Jersey Agricultural Experiment Station. August 2007:1–9

  32. Missaoui AM, Fasoula VA, Bouton JH (2005) The effect of low plant density on response to selection for biomass production in switchgrass. Euphytica 142:1–12

    Article  Google Scholar 

  33. Missaoui AM, Paterson AH, Bouton JH (2006) Molecular markers for the classification of switchgrass (Panicum virgatum L.) germplasm and to assess genetic diversity in three synthetic switchgrass populations. Genet Resour and Crop Evol 53:1291–1302

    Article  CAS  Google Scholar 

  34. Narasimhamoorthy B, Saha MC, Swaller T, Bouton JH (2008) Genetic diversity in switchgrass collections assessed by EST-SSR markers. Bioenerg Res 1:136–146

    Article  Google Scholar 

  35. Nei M (1972) Genetic distance between populations. Am Nat 106:283–392

    Article  Google Scholar 

  36. Nei M, Jin L (1989) Variances of the average numbers of nucleotide substitutions within and between populations. Mol Biol Evol 6:290–300

    CAS  PubMed  Google Scholar 

  37. Newbury HJ, Ford-Lloyd BV (1997) Estimation of genetic diversity. In: Maxted N et al (eds) Plant genetic conservation: the in situ approach. Chapman and Hall, London, pp 192–206

    Google Scholar 

  38. Newell LC (1968) Registration of Pathfinder Switchgrass. Crop Sci 8:516

    Article  Google Scholar 

  39. Peakall R, Smouse PE, Huff DR (1995) Evolutionary implications of allozyme and RAPD variation in diploid populations of dioecious buffalograss Buchloe dactyloides. Mol Ecol 4:135–147

    Article  CAS  Google Scholar 

  40. Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  41. Rajasekar S, Fei S, Christians NE (2006) Analysis of genetic diversity in rough bluegrass determined by RAPD markers. Crop Sci 46:162–167

    Article  CAS  Google Scholar 

  42. Sanderson MA, Reed RL, McLaughlin SB, Wullschleger SD, Conger BV, Parrish DJ et al (1996) Switchgrass as a sustainable bioenergy crop. Bioresour Technol 56:83–93

    Article  CAS  Google Scholar 

  43. SAS Institute Inc (2004) SAS OnlineDoc® 9.1.3. SAS Institute, Cary, NC

    Google Scholar 

  44. Sehgal D, Rajpal VR, Raina SN, Sasanuma T, Sasakuma T (2009) Assaying polymorphism at DNA level for genetic diversity diagnostics of the safflower (Carthamus tinctoris L.) world germplasm resources. Genetica 135:457–470

    Article  CAS  PubMed  Google Scholar 

  45. Tateno Y, Takezaki N, Nei M (1994) Relative efficiencies of the maximum-likelihood, neighbor-joining, and maximum parsimony methods when substitution rates vary with site. Mol Biol Evol 11:261–277

    CAS  PubMed  Google Scholar 

  46. Tatineni V, Cantrell RG, Davis DD (1996) Genetic diversity in elite cotton germplasm determined by morphological characteristics and RAPDs. Crop Sci 36:186–192

    Article  Google Scholar 

  47. Tobias CM, Hayden DM, Twigg P, Sarath G (2006) Genic microsatellite markers derived from EST sequences of switchgrass (Panicum virgatum L.). Mol Ecol Notes 6:185–187

    Article  CAS  Google Scholar 

  48. Varshney RK, Graner A, Sorrels ME (2005) Genic microsatellite markers in plants: features and applications. Trends in Biotechnol 23:48–55

    Article  CAS  Google Scholar 

  49. Vogel KP, Hopkins AA, Moore KJ, Johnson KD, Carlson IT (1996) Registration of ‘Shawnee’ switchgrass. Crop Sci 36:1713

    Article  Google Scholar 

  50. Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244

    Article  Google Scholar 

  51. Yokoyama K, Biswas SK, Miyaji M, Nishimura K (2000) Identification and phylogenetic relationship of the most common pathogenic Candida species inferred from mitochondrial cytochrome b gene sequences. J Clin Microbiol 38:4503–4510

    CAS  PubMed  Google Scholar 

  52. Zeller KA, Jurgenson JE, El-Assiuty EM, Leslie JF (2000) Isozyme and amplified fragment length polymorphisms from Cephalosporium maydis in Egypt. Phytoparasitica 28:121–130

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their comments and suggestions and Drs. Mike Casler, Peter Smouse, and Lena Struwe for their time and advice on data analysis. We are grateful to Eric Weibel, Rob Shortell, PhD, Matt Koch, Christine Kubik, and Matt Mattia for assistance with data collection. This research was supported by the Rutgers Center for Turfgrass Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura M. Cortese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cortese, L.M., Honig, J., Miller, C. et al. Genetic Diversity of Twelve Switchgrass Populations Using Molecular and Morphological Markers. Bioenerg. Res. 3, 262–271 (2010). https://doi.org/10.1007/s12155-010-9078-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-010-9078-2

Keywords

Navigation