Skip to main content
Log in

Evaluation of two-dimensional total bone uptake (2D-TBU) and bone scan index (BSI) extracted from active bone metastatic burden on the bone scintigraphy in patients with radium-223 treatment

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

Radium-223 is a first alpha-emitting radionuclide treatment for metastatic castration-resistant prostate cancer (mCRPC) patients with bone metastases. Although the spread-based bone scan index (BSI) and novel index of the intensity-based two-dimensional total bone uptake (2D-TBU) from bone scintigraphy may provide useful input in radium-223 treatment, they have not been evaluated in detail yet. This study aimed to fill this gap by evaluating BSI and 2D-TBU in patients treated with radium-223.

Methods

Twenty-seven Japanese patients with mCRPC treated with radium-223 were retrospectively analyzed. The patients were evaluated via blood tests and bone scans at baseline and 3 cycles intervals of treatment. BSI and 2D-TBU were analyzed via VSBONE BSI in terms of correlations, response to radium-223 treatment, association with treatment completion, and the Kaplan–Meier survival analysis was performed.

Results

Nineteen patients (70.4%) completed six cycles of radium-223 treatment, whereas eight patients (29.6%) did not complete the treatment regimen. A significant difference in baseline BSI and 2D-TBU was observed between these groups of patients. Both BSI and 2D-TBU were highly correlated (r = 0.96, p < 0.001). Univariate analysis showed an association between radium-223 completion in median BSI and 2D-TBU values (p = 0.015) and completion percentage differences (91.7% vs. 45.5%; p = 0.027). The Kaplan–Meier product limit estimator showed that the median overall survival was 25.2 months (95% CI 14.0–33.6 months) in the completion group and 7.5 months (95% CI 3.3–14.2 months) in the without completion group (p < 0.001). The overall survival based on median cutoff levels showed a significant difference in 2D-TBU (p = 0.007), but not in BSI (p = 0.15).

Conclusions

The 2D-TBU may offer advantages over BSI in classifying patients towards radium-223 treatment based on the degree of progression of bone metastases. This study supports the importance of preliminary assessment of bone metastasis status using BSI and 2D-TBU extracted from VSBONE BSI for radium-223 treatment decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author SF, upon reasonable request.

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  2. Pezaro C, Omlin A, Lorente D, Rodrigues DN, Ferraldeschi R, Bianchini D, et al. Visceral disease in castration-resistant prostate cancer. Eur Urol. 2014;65(2):270–3.

    Article  CAS  PubMed  Google Scholar 

  3. Nishimura K. Management of bone metastasis in prostate cancer. J Bone Miner Metab. 2023;41(3):317–26.

    Article  CAS  PubMed  Google Scholar 

  4. Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Fosså SD, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369(3):213–23.

    Article  CAS  PubMed  Google Scholar 

  5. van der Zande K, Oyen WJG, Zwart W, Bergman AM. Radium-223 treatment of patients with metastatic castration resistant prostate cancer: biomarkers for stratification and response evaluation. Cancers. 2021;13(17):4346.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Miyoshi Y, Tsutsumi S, Yasui M, Kawahara T, Uemura KI, Hayashi N, et al. A novel prediction model for the completion of six cycles of radium-223 treatment and survival in patients with metastatic castration-resistant prostate cancer. World J Urol. 2021;39(9):3323–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Takeda K, Kawasaki Y, Sakayauchi T, Takahashi C, Katagiri Y, Tanabe T, et al. Clinical significance of completion of radium-223 treatment and acute adverse events in patients with metastatic castration-resistant prostate cancer. Asia Ocean J Nucl Med Biol. 2023;11(1):13–22.

    PubMed  PubMed Central  Google Scholar 

  8. Ito H, Yaegashi H, Okada Y, Shimada T, Yamaoka T, Okubo K, et al. Risk scoring system for Ra-223 discontinuation and its effect on prognosis: a retrospective study. Cancer Diagn Progn. 2021;1(4):323–30.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Imbriaco M, Larson SM, Yeung HW, Mawlawi OR, Erdi Y, Venkatraman ES, et al. A new parameter for measuring metastatic bone involvement by prostate cancer: the Bone Scan Index. Clin Cancer Res. 1998;4(7):1765–72.

    CAS  PubMed  Google Scholar 

  10. Nakajima K, Edenbrandt L, Mizokami A. Bone scan index: a new biomarker of bone metastasis in patients with prostate cancer. Int J Urol. 2017;24(9):668–73.

    Article  PubMed  Google Scholar 

  11. Nakajima K, Mizokami A, Matsuyama H, Ichikawa T, Kaneko G, Takahashi S, et al. Prognosis of patients with prostate cancer and bone metastasis from the Japanese prostatic cancer registry of standard hormonal and chemotherapy using bone scan index cohort study. Int J Urol. 2021;28(9):955–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yoshida A, Higashiyama S, Kawabe J. Predicting the prognosis of prostate cancer bone metastasis using the bone scan index and hot spots calculated using VSBONEⓇ bone scan index from Tc-99m-HYdroxymethylene diphosphonate bone scintigraphy. Urol Int. 2022;106(9):963–9.

    Article  PubMed  Google Scholar 

  13. Umeda T, Koizumi M, Fukai S, Miyaji N, Motegi K, Nakazawa S, et al. Evaluation of bone metastatic burden by bone SPECT/CT in metastatic prostate cancer patients: defining threshold value for total bone uptake and assessment in radium-223 treated patients. Ann Nucl Med. 2018;32(2):105–13.

    Article  CAS  PubMed  Google Scholar 

  14. Brix G, Nekolla EA, Borowski M, Noßke D. Radiation risk and protection of patients in clinical SPECT/CT. Eur J Nucl Med Mol Imaging. 2014;41(Suppl 1):S125–36.

    Article  PubMed  Google Scholar 

  15. Zacho HD, Manresa JAB, Aleksyniene R, Ejlersen JA, Fledelius J, Bertelsen H, et al. Three-minute SPECT/CT is sufficient for the assessment of bone metastasis as add-on to planar bone scintigraphy: prospective head-to-head comparison to 11-min SPECT/CT. EJNMMI Res. 2017;7(1):1.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shimizu A, Wakabayashi H, Kanamori T, Saito A, Nishikawa K, Daisaki H, et al. Automated measurement of bone scan index from a whole-body bone scintigram. Int J Comput Assist Radiol Surg. 2020;15(3):389–400.

    Article  PubMed  Google Scholar 

  17. Erdi YE, Humm JL, Imbriaco M, Yeung H, Larson SM. Quantitative bone metastases analysis based on image segmentation. J Nucl Med. 1997;38(9):1401–6.

    CAS  PubMed  Google Scholar 

  18. Shintawati R, Achmad A, Higuchi T, Shimada H, Hirasawa H, Arisaka Y, et al. Evaluation of bone scan index change over time on automated calculation in bone scintigraphy. Ann Nucl Med. 2015;29(10):911–20.

    Article  PubMed  Google Scholar 

  19. Kanda Y. Investigation of the freely available easy-to-use software “EZR” for medical statistics. Bone Marrow Transplant. 2013;48(3):452–8.

    Article  CAS  PubMed  Google Scholar 

  20. Saad F, Gillessen S, Heinrich D, Keizman D, O’Sullivan JM, Nilsson S, et al. Disease characteristics and completion of treatment in patients with metastatic castration-resistant prostate cancer treated with Radium-223 in an international early access program. Clin Genitourin Cancer. 2019;17(5):348-355.e5.

    Article  PubMed  Google Scholar 

  21. Utsumi N, Kurosaki H, Miura K, Kitoh H, Akakura K. Pretreatment PSA levels affects the completion rate of Ra-223 treatment. Sci Rep. 2021;11(1):6476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sartor O, Coleman RE, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, et al. An exploratory analysis of alkaline phosphatase, lactate dehydrogenase, and prostate-specific antigen dynamics in the phase 3 ALSYMPCA trial with radium-223. Ann Oncol. 2017;28:1090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kawaguchi G, Akazawa K, Ikeda T, Ikeda Y, Hara N, Nishiyama T. Prostate-specific antigen doubling time following radium-223 treatment as a predictor of the clinical course in patients with metastatic castration-resistant prostate cancer. SAGE Open Med. 2023;11:20503121231168492.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Matsumoto T, Hori Y, Shiota M, Blas L, Nakamura M, Seki N, et al. Effectiveness and safety of radium-223 dichloride in patients with castration-resistant prostate cancer and bone metastases in real-world practice: a multi-institutional study. Int J Urol. 2023;30(2):139–46.

    Article  CAS  PubMed  Google Scholar 

  25. Kawahara T, Miyoshi Y, Ninomiya S, Sato M, Takeshima T, Hasumi H, et al. Administration of radium-223 and the prognosis in Japanese bone metastatic castration-resistant prostate cancer patients: a large database study. Int J Urol. 2022;29(9):1079–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Miyoshi Y, Tsutsumi S, Kawahara T, Yasui M, Uemura K, Yoneyama S, et al. Prognostic value of automated bone scan index for predicting overall survival among bone metastatic castration resistant prostate cancer patients treated with radium-223. BJUI Compass. 2020;2(1):24–30.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shariftabrizi A, Kothari S, George S, Attwood K, Levine E, Lamonica D. Optimization of Radium-223 treatment of castration-resistant prostate cancer based on the burden of skeletal metastasis and clinical parameters. Oncologist. 2023;28(3):246–51.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Naito M, Ukai R, Hashimoto K. Bone scan index can be a useful biomarker of survival outcomes in patients with metastatic castration-resistant prostate cancer treated with radium-223. Cancer Rep. 2019;2(5): e1203.

    Article  Google Scholar 

  29. Kitajima K, Igeta M, Kuyama J, Kawahara T, Suga T, Otani T, et al. Novel nomogram developed for determining suitability of metastatic castration-resistant prostate cancer patients to receive maximum benefit from radium-223 dichloride treatment-Japanese Ra-223 therapy in prostate cancer using bone scan index (J-RAP-BSI) trial. Eur J Nucl Med Mol Imaging. 2023;50(5):1487–98.

    Article  CAS  PubMed  Google Scholar 

  30. Ichikawa H, Shibutani T, Onoguchi M, Taniguchi Y. New index to assess the extent of bone disease in patients with prostate cancer using SPECT/CT. Ann Nucl Med. 2022;36(11):941–50.

    Article  CAS  PubMed  Google Scholar 

  31. Dittmann H, Kaltenbach S, Weissinger M, Fiz F, Martus P, Pritzkow M, et al. The prognostic value of quantitative bone SPECT/CT before 223Ra treatment in metastatic castration-resistant prostate cancer. J Nucl Med. 2021;62(1):48–54.

    Article  CAS  PubMed  Google Scholar 

  32. Oya T, Ichikawa Y, Nakamura S, Tomita Y, Sasaki T, Inoue T, et al. Quantitative assessment of 99mTc-methylene diphosphonate bone SPECT/CT for assessing bone metastatic burden and its prognostic value in patients with castration-resistant prostate cancers: initial results in a single-center retrospective study. Ann Nucl Med. 2023;37(6):360–70.

    Article  CAS  PubMed  Google Scholar 

  33. Matsubara N, Nagamori S, Wakumoto Y, Uemura H, Kimura G, Yokomizo A, et al. Phase II study of radium-223 dichloride in Japanese patients with symptomatic castration-resistant prostate cancer. Int J Clin Oncol. 2018;23(1):173–80.

    Article  CAS  PubMed  Google Scholar 

  34. Uemura H, Uemura H, Matsubara N, Kinuya S, Hosono M, Yajima Y, et al. Safety and efficacy of radium-223 dichloride in Japanese patients with castration-resistant prostate cancer and bone metastases. Int J Clin Oncol. 2017;22(5):954–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nome R, Hernes E, Bogsrud TV, Bjøro T, Fosså SD. Changes in prostate-specific antigen, markers of bone metabolism and bone scans after treatment with radium-223. Scand J Urol. 2015;49(3):211–7.

    Article  CAS  PubMed  Google Scholar 

  36. Armstrong AJ, Anand A, Edenbrandt L, Bondesson E, Bjartell A, Widmark A, et al. Phase 3 assessment of the automated bone scan index as a prognostic imaging biomarker of overall survival in men with metastatic castration-resistant prostate cancer: a secondary analysis of a randomized clinical trial. JAMA Oncol. 2018;4(7):944–51.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hashimoto K, Miyoshi Y, Shindo T, Hori M, Tsuboi Y, Kobayashi K, et al. Dynamic changes of bone metastasis predict bone-predominant status to benefit from radium-223 dichloride for patients with castration-resistant prostate cancer. Cancer Med. 2020;9(22):8579–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kaneta T, Ogawa M, Daisaki H, Nawata S, Yoshida K, Inoue T. SUV measurement of normal vertebrae using SPECT/CT with Tc-99m methylene diphosphonate. Am J Nucl Med Mol Imaging. 2016;6(5):262–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Fukai S, Daisaki H, Umeda T, Shimada N, Miyaji N, Ito R, et al. Impact of patient body habitus on image quality and quantitative value in bone SPECT/CT. Ann Nucl Med. 2022;36(6):586–95.

    Article  CAS  PubMed  Google Scholar 

  40. Motegi K, Miyaji N, Yamashita K, Koizumi M, Terauchi T. Comparison of skeletal segmentation by deep learning-based and atlas-based segmentation in prostate cancer patients. Ann Nucl Med. 2022;36(9):834–41.

    Article  CAS  PubMed  Google Scholar 

  41. Aoki Y, Nakayama M, Nomura K, Tomita Y, Nakajima K, Yamashina M, et al. The utility of a deep learning-based algorithm for bone scintigraphy in patient with prostate cancer. Ann Nucl Med. 2020;34(12):926–31.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the staff of the Department of Nuclear Medicine, Cancer Institute Hospital of the Japanese Foundation for Cancer Research for their expert technical assistance of clinical radium-223 treatment and helpful discussions on this study.

Funding

Funding was provided by Nihon Medi-Physics.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study design and data interpretation. SF and HD wrote the article and contributed to the entire study procedure as the principal investigators. TU and NS contributed to image analysis. TT and MK contributed to the radium-223 treatment and obtention of ethical approval for this study.

Corresponding author

Correspondence to Shohei Fukai.

Ethics declarations

Conflict of interest

Hiromitsu Daisaki received a research funding from Nihon Medi-Physics Co., Ltd.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukai, S., Daisaki, H., Umeda, T. et al. Evaluation of two-dimensional total bone uptake (2D-TBU) and bone scan index (BSI) extracted from active bone metastatic burden on the bone scintigraphy in patients with radium-223 treatment. Ann Nucl Med (2024). https://doi.org/10.1007/s12149-024-01918-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12149-024-01918-4

Keywords

Navigation