Skip to main content

Bone Metastases: Assessment of Therapeutic Response Using Radiological and Nuclear Medicine Imaging Modalities

  • Chapter
  • First Online:
Bone Metastases

Abstract

Radiological and nuclear medicine imaging modalities that are used for evaluating the therapeutic response of metastatic bone disease include plain or digitalized radiography (XR), skeletal scintigraphy (SS), dual energy X-ray absorptiometry (DEXA), computed tomography (CT), magnetic resonance imaging (MRI), [18F] fluorodeoxyglucose positron emission tomography (FDG PET) and PET/CT. In this chapter we comment on the advantages and disadvantages of the aforementioned assessment modalities as seen through different clinical studies. Moreover, we present the well known response criteria described by the International Union Against Cancer (UICC) and World Health Organization (WHO) and the newer MDA (MD Anderson) criteria. In spite of the fact that serial XR and SS have been used for evaluating the treatment response for decades, changes are evident several months post therapy. Earlier response to treatment can be evaluated by using newer techniques such as the MRI or PET. Additionally therapeutic response may be quantified by monitoring changes in signal intensity (SI) and standard uptake value (SUV) respectively. PET/CT may be applied to follow both morphologic and metabolic changes in areas on skeletal metastases yielding interesting and promising results that reveal a new insight into the natural history of bone metastases. Due to the fact that only a few studies have investigated the use of these newer imaging modalities, further clinical trials are required to corroborate their promising results and establish the most appropriate imaging parameters and assessment time points. Finally, there is an absolute need to establish and adopt uniform response criteria for skeletal metastases through an international consensus in order to better evaluate therapeutic response in terms of accuracy and objectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown HK, Healy JH (2001) cancer-principles and practice of oncology. In: De Vita VT, Hellman S, Rosenberg SA (eds) 6th edn. Lippincott Williams and Wilkins, Philadelphia, pp 2713–2719

    Google Scholar 

  2. Vassiliou V, Kalogeropoulou C, Christopoulos C et al (2007) Combination ibandronate and radiotherapy for the treatment of bone metastases: clinical evaluation and radiologic assessment. Int J Radiat Oncol Biol Phys 67:264–272

    Article  PubMed  CAS  Google Scholar 

  3. Vassiliou V, Kalogeropoulou C, Giannopoulou E et al (2007) A novel study investigating the therapeutic outcome of patients with lytic, mixed and sclerotic bone metastases treated with combined radiotherapy and ibandronate. Clin Exp Metastasis 24:169–178

    Article  PubMed  CAS  Google Scholar 

  4. Saad F, Lipton A, Cook R et al (2007) Pathologic fractures correlate with reduced survival in patients with malignant bone disease. Cancer 110:1860–1867

    Article  PubMed  Google Scholar 

  5. Coleman R, Rubens R (1987) The clinical course of bone metastases in breast cancer. Br J Cancer 55:61–66

    Article  PubMed  CAS  Google Scholar 

  6. Hoskin PJ (1988) Scientific and clinical aspects of radiotherapy in the relief of bone pain. Cancer Surv 7:69–86

    PubMed  CAS  Google Scholar 

  7. Chow E, Harris K, Fan G et al (2007) Palliative radiotherapy trials for bone metastases. A systematic review. J Clin Oncol 25:1423–1436

    Article  PubMed  Google Scholar 

  8. Sze WM, Shelley MD, Held I et al (2003) Palliation of metastatic bone pain: single fraction versus multifraction radiotherapy. A systematic review of randomized trials. J Clin Oncol 15:345–352

    Article  CAS  Google Scholar 

  9. Coleman RE (2004) Bisphosphonates: clinical experience. Oncologist 9:14–27

    Article  PubMed  CAS  Google Scholar 

  10. Krempien R, Niethammer A, Harms W, Debus J (2005) Bisphosphonates and bone metastases: current status and future directions. Expert Rev Anticancer Ther 5:295–305

    Article  PubMed  CAS  Google Scholar 

  11. Aapro M, Abrahamsson PA, Body JJ et al (2008) Guidance on the use of bisphosphonates in solid tumors: recommendations of an international expert panel. Ann Oncol 19:420–432

    Article  PubMed  CAS  Google Scholar 

  12. Body JJ, Diel IJ, Lichinitser MR et al (2003) Intravenous ibandronate reduces the incidence of skeletal complications in patients with breast cancer and bone metastases. Ann Oncol 14:1399–1405

    Article  PubMed  Google Scholar 

  13. Pavlakis N, Stocker M (2002) Bisphosphonates for breast cancer. In: The cochrane library, issue 1. Oxford: update software

    Google Scholar 

  14. Body JJ, Diel IJ, Lichinitser M et al (2004) Oral ibandronate reduces the risk of skeletal complications in breast cancer patients with metastatic bone disease: results from two randomized, placebo-controlled phase III studies. Br J Cancer 90:1133–1137

    Article  PubMed  CAS  Google Scholar 

  15. Hortobagyi GN, Theriault R, Lipton A et al (1998) Long term prevention of skeletal complications of metastatic breast cancer with pamidronate. J Clin Oncol 16:2038–2044

    PubMed  CAS  Google Scholar 

  16. Khono N, Aogi K, Minami H et al (2005) Zoledronic acid significantly reduces skeletal complications compared with placebo in Japanese women with bone metastases from breast cancer: a randomized, placebo-controlled trial. J Clin Oncol 23:3314–3321

    Article  Google Scholar 

  17. Rosen L, Gordon D, Tchekmedyian S et al (2003) Zoledronic acid versus placebo in the treatment of skeletal metastases in patients with lung cancer and other solid tumors: a phase III, double-blind, randomized trial-the Zoledronic Acid Lung Cancer and Other Solid Tumors Study Group. J Clin Oncol 15:3150–3157

    Article  Google Scholar 

  18. Brown JE, Neville-Webbe H, Coleman RE (2004) The role of bisphosphonates in breast and prostate cancers. Endocr Relat Cancer 11:207–224

    Article  PubMed  CAS  Google Scholar 

  19. Body JJ, Diel IJ, Bell R et al (2004) Oral ibandronate improves bone pain and preserves quality of life in patients with skeletal metastases due to breast cancer. Pain 111:306–312

    Article  PubMed  CAS  Google Scholar 

  20. Gralow J, Tripathy D (2007) Managing metastatic bone pain: the role of bisphosphonates. J Pain Symptom Manag 33:462–472

    Article  CAS  Google Scholar 

  21. Diel IJ, Body JJ, Lichinitser MR, Kreuser ED et al (2004) Improved quality of life after long-term treatment with the bisphosphonate ibandronate in patients with metastatic bone disease due to breast cancer. Eur J Cancer 40:1704–1712

    Article  PubMed  CAS  Google Scholar 

  22. Diel IJ (2007) Effectiveness of bisphosphonates on bone pain and quality of life in breast cancer patients with metastatic bone disease: a review. Support Care Cancer 15:1243–1249

    Article  PubMed  Google Scholar 

  23. Lewington VJ (2005) Bone-seeking radionuclides for therapy. J Nucl Med 46:38s–47s

    PubMed  CAS  Google Scholar 

  24. Finlay IG, Mason MD, Shelley M (2005) Radioisotopes for the palliation of metastatic bone cancer: a systematic review. Lancet Oncol 6:392–400

    Article  PubMed  CAS  Google Scholar 

  25. Vassiliou V, Kardamakis D (2009) The management of metastatic bone disease with the combination of bisphosphonates and radiotherapy: from theory to clinical practice. Anticancer Agents Med Chem 9:326–335

    Article  PubMed  CAS  Google Scholar 

  26. Vassiliou V, Bruland O, Janjan N et al (2009) Combining systemic bisphosphonates with palliative external beam radiotherapy or bone-targeted radionuclide therapy: interactions and effectiveness. Clin Oncol 21:665–667

    Article  CAS  Google Scholar 

  27. Fizazi K, Beuzeboc P, Lumbroso J et al (2009) Phase II trial of consolidation docetaxel and samarium-153 in patients with bone metastases from castration-resistant prostate cancer. J Clin Oncol 27:2429–2435

    Article  PubMed  CAS  Google Scholar 

  28. Morris MJ, Pandit-Taskar N, Carrasquillo J et al (2009) Phase I study of samarium-153 lexidronam with docetaxel in castration-resistant metastatic prostate cancer. J Clin Oncol 27:2436–2442

    Article  PubMed  CAS  Google Scholar 

  29. Lam MG, Dahmane A, Stevens WH et al (2008) Combined use of zoledronic acid and 153Sm-EDTMP in hormone-refractory prostate cancer patients with bone metastases. Eur J Nucl Med Mol Imaging 35:756–765

    Article  PubMed  CAS  Google Scholar 

  30. Storto G, Klain M, Paone G et al (2006) Combined therapy Sr-89 and zoledronic acid in patients with painful bone metastases. Bone 39:35–41

    Article  PubMed  CAS  Google Scholar 

  31. Heyward JL, Carbone PP, Heusen JC et al (1977) Assessment of response to therapy in advanced breast cancer. Br J Cancer 35:292–298

    Article  Google Scholar 

  32. World Health Organization (WHO) (1979) Handbook for reporting results of cancer treatment. World Health Organization Offset Publication, Geneva

    Google Scholar 

  33. Hamaoka T, Madewell JE, Podolff DA et al (2004) Bone imaging in metastatic breast cancer. J Clin Oncol 22:2942–2953

    Article  PubMed  Google Scholar 

  34. Hamaoka T, Castelloe CM, Madewell JE et al (2010) Tumor response interpretation with new response criteria vs the World Health Organisation criteria in patients with bone-only metastatic breast cancer. Br J Cancer 102:651–657

    Article  PubMed  CAS  Google Scholar 

  35. Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European organization for research and treatment of cancer, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216

    Article  PubMed  CAS  Google Scholar 

  36. Galasko CSD (1995) Diagnosis of skeletal metastases and assessment of response to treatment. Clin Orthop Relat Res 312:64–75

    PubMed  Google Scholar 

  37. Vassiliou V, Kardamakis D (2008) Types of bone metastases in women with breast cancer undergoing systemic treatments. Radiol Med 113:771–773

    Article  PubMed  CAS  Google Scholar 

  38. Body JJ (1992) Metastatic bone disease: clinical and therapeutic aspects. Bone 13:557–562

    Article  Google Scholar 

  39. Clamp A, Danson S, Nguyen H et al (2004) Assessment of therapeutic response in patients with metastastic bone disease. Lancet Oncol 5:607–616

    Article  PubMed  Google Scholar 

  40. Southard TE, Southard KA (1996) Detection of simulated osteoporosis in maxillae using radiographic texture analysis. IEEE Trans Biom Eng 43:123–132

    Article  CAS  Google Scholar 

  41. Harada H, Katagiri H, Kamata M et al (2010) Radiological response and clinical outcome in patients with femoral bone metastases after radiotherapy. J Radiat Res 51:131–136

    Article  PubMed  CAS  Google Scholar 

  42. Huber S, Ulsperger E, Gomar C et al (2002) Osseous metastases in breast cancer: radiographic monitoring of therapeutic response. Anticancer Res 22:1279–1288

    PubMed  CAS  Google Scholar 

  43. Kouloulias VE, Kouvaris RJ, Antypas C et al (2003) An intra patient dose –escalation study of disodium pamidronate plus radiotherapy versus radiotherapy alone for the treatment of osteolytic metastases. Strahlenther Onkol 179:471–479

    PubMed  Google Scholar 

  44. Kouloulias VE, Dardoufas CE, Kouvaris JR et al (2002) Use of image processing techniques to assess effect of disodium pamidronate in conjunction with radiotherapy in patients with bone metastases. Acta Oncol 41:169–174

    Article  PubMed  CAS  Google Scholar 

  45. Kouloulias V, Matsopoulos G, Kouvaris J et al (2003) Radiotherapy in conjunction with intravenous infusion of 180 mg of disodium pamidronate in management markers, quality of life, and monitoring of recalcification using assessments of gray-level histogram in plain radiographs. Int J Radiat Oncol Biol Phys 57:143–157

    Article  PubMed  CAS  Google Scholar 

  46. Kouloulias V, Antypas C, Dardoufas C et al (2001) Evaluation of recalcification of bone metastases after radiotherapy and i.v. infusion of disodium pamidronate, using image processing techniques. Comparative assessment using measurements of the optical density of plain radiography. Phys Med XVII:17–24

    Google Scholar 

  47. Galasko CSB (1984) The pathophysiological basis for skeletal scintigraphy. In: Galasko CSB, Weber DA (eds) Radionuclide scintigraphy in orthopedics. Churchill Livingstone, Edinburgh, pp 34–39

    Google Scholar 

  48. Scher H (2003) Prostate carcinoma: defining therapeutic objectives and improving overall outcomes. Cancer Suppl 97:758–771

    Article  Google Scholar 

  49. Cook GJ, Fogelman I (2001) The role of nuclear medicine in monitoring treatment in skeletal malignancy. Semin Nucl Med 31:206–211

    Article  PubMed  CAS  Google Scholar 

  50. Vogel CL, Schoenfelder J, Shemano I et al (1995) Worsening bone scan in the evaluation of antitumor response during hormonal therapy of breast cancer. J Clin Oncol 13:1123–1128

    PubMed  CAS  Google Scholar 

  51. Rossleigh MA, Lovergrove FT, Reynolds PM et al (1984) The assessment of response to therapy of bone metastases in breast cancer. Aust N Z J Med 14:19–22

    Article  PubMed  CAS  Google Scholar 

  52. Janicek M, Hayes D, Kaplan W (1994) Healing flare in skeletal metastases from breast cancer. Radiology 192:201–204

    PubMed  CAS  Google Scholar 

  53. Lokich JJ (1978) Osseus metastases: radiographic monitoring of therapeutic response. Oncology 35:274–276

    Article  PubMed  CAS  Google Scholar 

  54. Citrin DL, Hougen C, Zweibel W et al (1981) The use of serial bone scans in assessing response of bone metastases to systemic treatment. Cancer 47:680–685

    Article  PubMed  CAS  Google Scholar 

  55. Chavdarova L, Piperkova L, Tsonevska A et al (2006) Bone scintigraphy in the monitoring of treatment effect of bisphosphonates in bone metastatic breast cancer. J BUON 11:499–504

    PubMed  CAS  Google Scholar 

  56. Hortobagyi GN, Libshitz HI, Seabold JE (1984) Osseous metastases of breast cancer. Clinical, biochemical, radiographic and scintigraphic evaluation of response to therapy. Cancer 53:577–582

    Article  PubMed  CAS  Google Scholar 

  57. Sabbatini P, Larson SM, Kremer A et al (1999) Prognostic significance of extent of disease in bone in patients with androgen-independent prostate cancer. J Clin Oncol 17:948–957

    PubMed  CAS  Google Scholar 

  58. Yohara J, Noguchi M, Noda S (2003) Quantitative evaluation of bone metastases in patients with advanced prostate cancer during systemic treatment. BJU 92:379–383

    Article  Google Scholar 

  59. Berruti A, Dogliotti L, Osella G et al (2000) Evaluation by dual energy x-ray absorptiometry of changed bone density in metastatic bone sites as a consequence of systemic treatment. Oncol Rep 7:777–781

    PubMed  CAS  Google Scholar 

  60. Smith GL, Doherty AP, Banks LM et al (2001) Dual x-ray absorptiometry detects disease- and treatment-related alterations of bone density in prostate cancer patients. Clin Exp Metastasis 18:385–390

    Article  Google Scholar 

  61. Shapiro CL, Keating J, Angell JE et al (1999) Monitoring therapeutic response in skeletal metastases using dual-energy x-ray absorptiometry: a prospective feasibility study in breast cancer patients. Cancer Invest 17:566–574

    Article  PubMed  CAS  Google Scholar 

  62. Inoka T, Takehashi K, Aburano T et al (2010) Spinal metastasis from lung cancer fifteen years after surgery presenting a pseudohemangioma appearance of the vertebra: a case report. Spine 35:86–89

    Article  Google Scholar 

  63. Rafii M, Firooznia H, Golimbu C, Beranbaum E (1986) CT of skeletal metastasis. Semin Ultrasound CT MR 7:371–379

    Google Scholar 

  64. Reinbold WD, Wannenmachen M, Hodapp N, Adler CP (1989) Osteodensitometry of vertebral metastases after radiotherapy using quantitative computed tomography. Skeletal Radiol 18:517–521

    Article  PubMed  CAS  Google Scholar 

  65. Chow E, Holden L, Rubenstein J et al (2002) Computed tomography (CT) evaluation of breast cancer patients with osteolytic bone metastases undergoing palliative radiotherapy-a feasibility study. Radiother Oncol 64:275–280

    Article  PubMed  Google Scholar 

  66. Koswig S, Budach V (1999) Remineralization and pain relief in bone metastases after different radiotherapy fractions (10 times 3 Gy vs 1 time 8 Gy). A prospective study. Strahlenther Onkol 175:500–508

    Article  PubMed  CAS  Google Scholar 

  67. Wachenfeld I, Sanner G, Böttcher HD, Kollath J (1996) The remineralisation of the vertebral metastases of breast carcinoma after radiotherapy. Strahlenther Onkol 172:332–341

    PubMed  CAS  Google Scholar 

  68. Ezzidin S, Sabet A, Heinemann F et al (2011) Response and long term control of bone metastases after peptide receptor radionuclide therapy with 177Lu-octreotide. J Nucl Med 52:1197–1203

    Article  Google Scholar 

  69. Vassiliou V, Kalogeropoulou C, Leotsinidis M et al (2010) Management of symptomatic bone metastases from breast cancer with concomitant use of external radiotherapy and ibandronate: results of a prospective, pilot study. Breast J 16:92–94

    Article  PubMed  Google Scholar 

  70. Vassiliou V, Leotsinides M, Kalogeropoulou C, Kardamakis D (2009) Concurrent application of bisphosphonates and external beam radiotherapy in patients with metastatic bone disease from renal cancer. Br J Urol Int 104:417–418

    Article  Google Scholar 

  71. Grant VB, Owers R, Evans AJ, Cheung KL (2005) Should computerized tomography (CT) replace abdominal ultrasonography and chest radiographs (USG + CXR) as initial staging investigation for visceral disease in patients with metastatic breast cancer (MBC)? Eur J Cancer Suppl 3:S33

    Google Scholar 

  72. Bristow AR, Agrawal A, Evans AJ, Burrell EJ et al (2008) Can computerized tomography replace bone scintigraphy in detecting bone metastases from breast cancer? A prospective study. Breast 17:98–103

    Article  PubMed  CAS  Google Scholar 

  73. Whitlock JPL, Evans AJ, Jackson L et al (2001) Imaging of metastatic breast cancer: distribution and radiological assessment at presentation. Clin Oncol 13:181–186

    CAS  Google Scholar 

  74. Ghanem N, Altehoefer C, Högerle S et al (2002) Comparative diagnostic value and therapeutic relevance of magnetic resonance imaging and bone marrow scintigraphy in patients with metastatic solid tumours of the axial skeleton. Eur J Radiol 43:256–261

    Article  PubMed  Google Scholar 

  75. Ciray I, Lindman H, Astrom KG et al (2001) Early response of breast cancer bone metastases to chemotherapy evaluated by MR imaging. Acta Radiol 42:198–206

    PubMed  CAS  Google Scholar 

  76. Brown AL, Middleton G, MacVicar AD, Husband ES (1998) T1-weighted magnetic resonance imaging in breast cancer vertebral metastases: changes on treatment and correlation with response to therapy. Clin Radiol 53:935

    Article  Google Scholar 

  77. Saip P, Tenekeci N, Aydiner A et al (1999) Response evaluation of bone metastases in breast cancer: value of magnetic resonance imaging. Cancer Invest 17:575–580

    Article  PubMed  CAS  Google Scholar 

  78. Tombal B, Afshin R, Therasse P, Cangh PJV (2005) Magnetic resonance imaging of the axial skeleton enables objective measurement of tumor response on prostate cancer bone metastases. Prostate 65:178–187

    Article  PubMed  Google Scholar 

  79. Montemuro F, Russo F, Martiacich L et al (2004) Dynamic contrast enhanced magnetic resonance imaging in monitoring bone metastases in breast cancer patients receiving bisphosphonates and endocrine therapy. Acta Radiol 45:71–74

    Article  Google Scholar 

  80. Freedman O, Clemons M, Vassiliou V, Kardamakis D et al (2009) Biology and treatment 12: bone metastases: a translational and clinical approach: assessment of therapeutic response. In: Kardamakis D, Vassiliou V, Chow E (eds.) Book series cancer metastasis. Springer Science and Media B.V., pp 345–370

    Google Scholar 

  81. Byun WMB, Shin SO, Chang Y et al (2002) Diffusion-weighted MR images of metastatic disease of the spine: assessment of response to therapy. AJNR Am J Neuroradiol 23:906–912

    PubMed  Google Scholar 

  82. Messiu C, Collins DJ, Giles S et al (2011) Assessing response in bone metastases in prostate cancer with diffusion weighted MRI. Eur Radiol 10:2169–2177

    Article  Google Scholar 

  83. Reischauer C, Froehlich JM, Koh DM et al (2010) Bone metastases from prostate cancer: assessing treatment response by using diffusion-weighted imaging and functional diffusion maps—initial observations. Radiology 2:523–531

    Article  Google Scholar 

  84. Wahl RL, Jacene H, Kasamon Y, Lodge MA (2009) From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J Nucl Med 50(suppl 1):122s–150s

    Article  PubMed  CAS  Google Scholar 

  85. Cook G, Fogelman I (2000) The role of positron emission tomography in the management of bone metastases. Cancer 88:2927–2933

    Article  PubMed  CAS  Google Scholar 

  86. Ohta M, Tokuda Y, Suzuki Y et al (2001) Whole body PET for the evaluation of bony metastases in patients with breast cancer: comparison with 99Tcm-MDp bone scintigraphy. Nucl Med Commun 22:875–879

    Article  PubMed  CAS  Google Scholar 

  87. Wu H, Yen R, Shen YY et al (2002) Comparing whole body 18f-2-deoxyglucose positron emission tomography and technetium 99 methylene diphosphate bone scan to detect bone metastases in patients with renal cell carcinomas: a preliminary report. J Cancer Res Clin Oncol 128:503–506

    Article  PubMed  CAS  Google Scholar 

  88. Cook GJ, Houston S, Rubens R et al (1998) Detection of bone metastases in breast cancer by 18 FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 26:3375–3379

    Google Scholar 

  89. Shreve P, Grossman H, Gross M, Wahl RL (1996) Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18] fluoro-D-glucose. Radiology 199:751–756

    PubMed  CAS  Google Scholar 

  90. Stafford SE, Gralow JR, Schubert EK et al (2002) Use of serial FDG PET to measure the response of bone-dominant breast cancer to therapy. Acad Radiol 9:913–921

    Article  PubMed  Google Scholar 

  91. Lindholm P, Lapela M, Nagren K (2009) Preliminary study of carbon −11-methionine PET in the evaluation of early response to therapy in advanced breast cancer. Nucl Med Commun 30:30–36

    Article  PubMed  CAS  Google Scholar 

  92. De Giorg U, Mego M, Rohren E et al (2010) 18 F-FDG PET/CT findings and circulating tumor cell counts in the monitoring of systemic therapies for bone metastases from breast cancer. J Nucl Med 51:1213–1218

    Article  Google Scholar 

  93. Tateishi U, Gamez C, Dawood S et al (2008) Bone metastases in patients with metastatic breast cancer: morphologic and metabolic monitoring of response to systemic therapy with integrated PETCT. Radiology 247:189–196

    Article  PubMed  Google Scholar 

  94. Du Y, Cullum I, Illidge TM, Ell PJ (2007) Fusion of metabolic function and morphology: sequential [18 F]fluorodeoxyglucose positron emission tomography/computed tomography studies yield new insights into the natural history of bone metastases in breast cancer. J Clin Oncol 25:3449–3447

    Article  Google Scholar 

  95. Dehtashti F, Flanagan FL, Mortimer JE et al (1999) Positron emission tomographic assessment of “metabolic flare” to predict response of metastatic breast cancer to antiestrogen therapy. Eur J Nucl Med 26:51–56

    Article  Google Scholar 

  96. Vassiliou V, Andreopoulos D (2010) Assessment of therapeutic response in patients with metastatic skeletal disease: suggested modifications for the MDA response classification criteria. BJC 103:925–926

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilios Vassiliou M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vassiliou, V., Polyviou, P., Andreopoulos, D., Frangos, S., Kardamakis, D. (2014). Bone Metastases: Assessment of Therapeutic Response Using Radiological and Nuclear Medicine Imaging Modalities. In: Vassiliou, V., Chow, E., Kardamakis, D. (eds) Bone Metastases. Cancer Metastasis - Biology and Treatment, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7569-5_21

Download citation

Publish with us

Policies and ethics