Skip to main content

Advertisement

Log in

Artificial neural network for the prediction model of glomerular filtration rate to estimate the normal or abnormal stages of kidney using gamma camera

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

Chronic kidney disease (CKD) is evaluated based on glomerular filtration rate (GFR) using a gamma camera in the nuclear medicine center or hospital in a routine procedure, but the gamma camera does not provide the accurate stages of the diseases. Therefore, this research aimed to find out the normal or abnormal stages of CKD based on the value of GFR using an artificial neural network (ANN).

Methods

Two hundred fifty (Training 188, Testing 62) kidney patients who underwent the ultrasonography test to diagnose the renal test in our nuclear medical centre were scanned using gamma camera. The patients were injected with 99mTc-DTPA before the scanning procedure. After pushing the syringe into the patient's vein, the pre-syringe and post syringe radioactive counts were calculated using the gamma camera. The artificial neural network uses the softmax function with cross-entropy loss to diagnose CKD normal or abnormal labels depending on the value of GFR in the output layer.

Results

The results showed that the accuracy of the proposed ANN model was 99.20% for K-fold cross-validation. The sensitivity and specificity were 99.10% and 99.20%, respectively. The Area under the curve (AUC) was 0.9994.

Conclusion

The proposed model using an artificial neural network can classify the normal or abnormal stages of CKD. After implementing the proposed model clinically, it may upgrade the gamma camera to diagnose the normal or abnormal stages of the CKD with an appropriate GFR value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The institution at which the work was performed—Institute of Nuclear Medicine and Allied Sciences, Rajshahi-6000, Bangladesh.

References

  1. Webster AC, Nagler EV, Morton RL, Masson P. Chronic kidney disease. Lancet. 2017;389:1238–52.

    Article  PubMed  Google Scholar 

  2. Glassock RJ, Warnock DG, Delanaye P. The global burden of chronic kidney disease: estimates, variability and pitfalls. Nat Rev Nephrol. 2017;13:104.

    Article  CAS  PubMed  Google Scholar 

  3. Waller DG, Keast CM, Fleming JS, Ackery DM. Measurement of glomerular filtration rate with technetium-99m DTPA: comparison of plasma clearance techniques. J Nucl Med. 1987;28:372–7.

    CAS  PubMed  Google Scholar 

  4. Levey AS, Inker LA. GFR as the “Gold Standard”: estimated, measured, and true. Am J Kidney Dis. 2016;67:9–12.

    Article  PubMed  Google Scholar 

  5. Schlegel JU, Hamway SA. Individual renal plasma flow determination in 2 minutes. J Urol. 1976;116:282–5.

    Article  CAS  PubMed  Google Scholar 

  6. Keopke, John A, Keopke, John F. Guide to clinical laboratory diagnosis. 3rd ed. US California: Appleton and Lange; 1987. pp. 40–56.

  7. Gates GF. Creatinine clearance estimation from serum creatinine values: an analysis of three mathematical models of glomerular function. Am J Kidney Dis. 1985;5:199–205.

    Article  CAS  PubMed  Google Scholar 

  8. Stevens LA, Levey AS. Measured GFR as a confirmatory test for estimated GFR. J Am Soc Nephrol. 2009;20:2305–13.

    Article  PubMed  Google Scholar 

  9. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.

    Article  CAS  PubMed  Google Scholar 

  11. Gates GF. Split renal function testing using Tc-99m DTPA. A rapid technique for determining differential glomerular filtration. Clin Nucl Med. 1983;8:400–7.

    Article  CAS  PubMed  Google Scholar 

  12. Itoh K. Comparison of methods for determination of glomerular filtration rate: Tc-99m-DTPA renography, predicted creatinine clearance method and plasma sample method. Ann Nucl Med. 2003;17:561–5.

    Article  PubMed  Google Scholar 

  13. Ma Y-C, Zuo L, Zhang C-L, Wang M, Wang R-F, Wang H-Y. Comparison of 99mTc-DTPA renal dynamic imaging with modified MDRD equation for glomerular filtration rate estimation in Chinese patients in different stages of chronic kidney disease. Nephrol Dial Transplant. 2007;22:417–23.

    Article  PubMed  Google Scholar 

  14. Liu X, Pei X, Li N, Zhang Y, Zhang X, Chen J, et al. Improved glomerular filtration rate estimation by an artificial neural network. PLoS ONE. 2013;8: e58242.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Young J, Macke CJ, Tsoukalas LH. Short-term acoustic forecasting via artificial neural networks for neonatal intensive care units. J Acoust Soc Am. 2012;132:3234–9.

    Article  PubMed  Google Scholar 

  16. Hu K, Wan JQ, Ma YW, Wang Y, Huang MZ. A fuzzy neural network model for monitoring A2/O process using on-line monitoring parameters. J Environ Sci Health Part A. 2012;47:744–54.

    Article  CAS  Google Scholar 

  17. Emoto T, Abeyratne UR, Chen Y, Kawata I, Akutagawa M, Kinouchi Y. Artificial neural networks for breathing and snoring episode detection in sleep sounds. Physiol Meas. 2012;33:1675.

    Article  PubMed  Google Scholar 

  18. Nick TG, Campbell KM. Logistic regression. Top Biostat. 2007. https://doi.org/10.1007/978-1-59745-530-5_14.

    Article  Google Scholar 

  19. Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15:361–87.

    Article  PubMed  Google Scholar 

  20. Li YX, Jiang LC. Application of ANN algorithm in tree height modeling. App Mech Mater. 2010;20:756–61.

    Article  CAS  Google Scholar 

  21. Patel JL, Goyal RK. Applications of artificial neural networks in medical science. Curr Clin Pharmacol. 2007;2:217–26.

    Article  PubMed  Google Scholar 

  22. Stergiou C, Siganos D. Neural Networks. Imperial College of London, Computer Department; 2017. http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html#Contents.

  23. Miller S, Bews J, Kinsner W. Brachytherapy cancer treatment optimization using simulated annealing and artificial neural networks. Canadian Conference on Electrical and Computer Engineering 2001 Conference Proceedings (Cat No 01TH8555). IEEE; 2001. pp. 649–54.

  24. Cross SS, Harrison RF, Kennedy RL. Introduction to neural networks. Lancet. 1995;346:1075–9.

    Article  CAS  PubMed  Google Scholar 

  25. Gao J, Zagadailov P, Merchant AM. The use of artificial neural network to predict surgical outcomes after inguinal hernia repair. J Surg Res. 2021;259:372–8.

    Article  PubMed  Google Scholar 

  26. Xun L, Xiaoming W, Ningshan L, Tanqi L. Application of radial basis function neural network to estimate glomerular filtration rate in Chinese patients with chronic kidney disease. 2010 International Conference on Computer Application and System Modeling (ICCASM 2010). IEEE; 2010. pp. V15–332.

  27. Gaweda AE, Jacobs AA, Aronoff GR, Brier ME. Model predictive control of erythropoietin administration in the anemia of ESRD. Am J Kidney Dis. 2008;51:71–9.

    Article  CAS  PubMed  Google Scholar 

  28. Baxt WG, Skora J. Prospective validation of artificial neural network trained to identify acute myocardial infarction. Lancet. 1996;347:12–5.

    Article  CAS  PubMed  Google Scholar 

  29. Dybowski R, Gant V, Weller P, Chang R. Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm. Lancet. 1996;347:1146–50.

    Article  CAS  PubMed  Google Scholar 

  30. Guh J-Y, Yang C-Y, Yang J-M, Chen L-M, Lai Y-H. Prediction of equilibrated postdialysis BUN by an artificial neural network in high-efficiency hemodialysis. Am J Kidney Dis. 1998;31:638–46.

    Article  CAS  PubMed  Google Scholar 

  31. Rajković KM, Dabić-Stanković K, Stanković J, Aćimović M, Đukanović N, Nikolin B. Modelling and optimisation of treatment parameters in high-dose-rate mono brachytherapy for localised prostate carcinoma using a multilayer artificial neural network and a genetic algorithm: Pilot study. Comput Biol Med. 2020;126:104045.

    Article  PubMed  CAS  Google Scholar 

  32. Jaberi R, Siavashpour Z, Aghamiri MR, Kirisits C, Ghaderi R. Artificial neural network based gynaecological image-guided adaptive brachytherapy treatment planning correction of intra-fractional organs at risk dose variation. J Contemp Brachytherapy. 2017;9:508–18.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Widrow B, Rumelhart DE, Lehr MA. Neural networks: applications in industry, business and science. Commun ACM. 1994;37:93–106.

    Article  Google Scholar 

  34. Baxt WG. Use of an artificial neural network for the diagnosis of myocardial infarction. Ann Intern Med. 1991;115:843–8.

    Article  CAS  PubMed  Google Scholar 

  35. Wang J-L, Jin G-L, Yuan Z-G. Artificial neural network predicts hemorrhagic contusions following decompressive craniotomy in traumatic brain injury. J Neurosurg Sci. 2021;65:69–74.

    Article  PubMed  Google Scholar 

  36. Azimi P, Benzel EC, Shahzadi S, Azhari S, Mohammadi HR. Use of artificial neural networks to predict surgical satisfaction in patients with lumbar spinal canal stenosis. J Neurosurg Spine. 2014;20:300–5.

    Article  PubMed  Google Scholar 

  37. Bottaci L, Drew PJ, Hartley JE, Hadfield MB, Farouk R, Lee PW, et al. Artificial neural networks applied to outcome prediction for colorectal cancer patients in separate institutions. Lancet. 1997;350:469–72.

    Article  CAS  PubMed  Google Scholar 

  38. Kim JS, Merrill RK, Arvind V, Kaji D, Pasik SD, Nwachukwu CC, et al. Examining the ability of artificial neural networks machine learning models to accurately predict complications following posterior lumbar spine fusion. Spine. 2018;43:853.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Li N, Huang H, Qian H-Z, Liu P, Lu H, Liu X. Improving accuracy of estimating glomerular filtration rate using artificial neural network: model development and validation. J Transl Med. 2020;18:1–8.

    Article  CAS  Google Scholar 

  40. Fink HA, Ishani A, Taylor BC, Greer NL, MacDonald R, Rossini D, et al. Chronic kidney disease stages 1–3: screening, monitoring, and treatment. 2012.

  41. Assadi M, Eftekhari M, Hozhabrosadati M, Saghari M, Ebrahimi A, Nabipour I, et al. Comparison of methods for determination of glomerular filtration rate: low and high-dose Tc-99m-DTPA renography, predicted creatinine clearance method, and plasma sample method. Int Urol Nephrol. 2008;40:1059.

    Article  CAS  PubMed  Google Scholar 

  42. Stevens LA, Zhang Y, Schmid CH. Evaluating the performance of equations for estimating glomerular filtration rate. J Nephrol. 2008;21:797–807.

    PubMed  PubMed Central  Google Scholar 

  43. Du X, Liu L, Hu B, Wang F, Wan X, Jiang L, et al. Is the Chronic Kidney Disease Epidemiology Collaboration four-level race equation better than the cystatin C equation? Nephrology. 2012;17:407–14.

    Article  CAS  PubMed  Google Scholar 

  44. Li Q, Zhang C, Fu Z, Wang R, Ma Y, Zuo L. Development of formulae for accurate measurement of the glomerular filtration rate by renal dynamic imaging. Nucl Med Commun. 2007;28:407–13.

    Article  PubMed  Google Scholar 

  45. Liu X, Lv L, Wang C, Shi C, Cheng C, Tang H, et al. Comparison of prediction equations to estimate glomerular filtration rate in Chinese patients with chronic kidney disease. Intern Med J. 2012;42:e59-67.

    Article  CAS  PubMed  Google Scholar 

  46. Palaz D, Doss MM-, Collobert R. Convolutional neural networks-based continuous speech recognition using raw speech signal. 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE; 2015. pp. 4295–9.

  47. Luo Y, Wong Y, Kankanhalli M, Zhao Q. G-Softmax: improving intraclass compactness and interclass separability of features. IEEE Trans Neural Netw Learn Syst. 2020;31:685–99.

    Article  PubMed  Google Scholar 

  48. Abdel-Hamid O, Mohamed A, Jiang H, Deng L, Penn G, Yu D. Convolutional neural networks for speech recognition. IEEE/ACM Trans Audio Speech Lang Process. 2014;22:1533–45.

    Article  Google Scholar 

  49. Moons KG, Altman DG, Reitsma JB, Ioannidis JP, Macaskill P, Steyerberg EW, et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015;162:W1-73.

    Article  PubMed  Google Scholar 

  50. Sugawara S, Ishii S, Kojima Y, Ito H, Suzuki Y, Oriuchi N. Feasibility of gamma camera-based GFR measurement using renal depth evaluated by lateral scan of 99m Tc-DTPA renography. Ann Nucl Med. 2020;34:349–57. https://doi.org/10.1007/s12149-020-01455-w.

    Article  CAS  PubMed  Google Scholar 

  51. Chen J, Tang H, Huang H, Lv L, Wang Y, Liu X, et al. Development and validation of new glomerular filtration rate predicting models for Chinese patients with type 2 diabetes. J Transl Med. 2015;13:317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Liu X, Chen Y-R, Li N, Wang C, Lv L-S, Li M, et al. Estimation of glomerular filtration rate by a radial basis function neural network in patients with type-2 diabetes mellitus. BMC Nephrol. 2013;14:1–9.

    Article  CAS  Google Scholar 

  53. Usberti M, Federico S, Di Minno G, Ungaro B, Ardillo G, Pecoraro C, et al. Effects of angiotensin II on plasma ADH, prostaglandin synthesis, and water excretion in normal humans. Am J Physiol. 1985;248:F254–9.

    CAS  PubMed  Google Scholar 

  54. Stengel B, Tarver-Carr ME, Powe NR, Eberhardt MS, Brancati FL. Lifestyle factors, obesity and the risk of chronic kidney disease. Epidemiology. 2003;14:479–87.

    Article  PubMed  Google Scholar 

  55. Kuo C-C, Chang C-M, Liu K-T, Lin W-K, Chiang H-Y, Chung C-W, et al. Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning. NPJ Digit Med. 2019;2:29.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Liu X, Pei X, Li N, Zhang Y, Zhang X, Chen J, et al. Improved glomerular filtration rate estimation by an artificial neural network. PLoS One [Internet]. 2013 [cited 2021 Apr 20];8. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3596400/

  57. Liu X, Li N, Lv L, Huang J, Tang H, Chen J, et al. A comparison of the performances of an artificial neural network and a regression model for GFR estimation. Am J Kidney Dis. 2013;62:1109–15.

    Article  PubMed  Google Scholar 

  58. Li N, Huang H, Qian H-Z, Liu P, Lu H, Liu X. Improving accuracy of estimating glomerular filtration rate using artificial neural network: model development and validation. J Transl Med. 2020;18:120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Liu X, Li N, Lv L, Fu Y, Cheng C, Wang C, et al. Improving precision of glomerular filtration rate estimating model by ensemble learning. J Transl Med. 2017;15:231.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Almansour NA, Syed HF, Khayat NR, Altheeb RK, Juri RE, Alhiyafi J, et al. Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study. Comput Biol Med. 2019;109:101–11.

    Article  PubMed  Google Scholar 

  61. Soveri I, Berg UB, Björk J, Elinder C-G, Grubb A, Mejare I, et al. Measuring GFR: a systematic review. Am J Kidney Dis. 2014;64:411–24.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alamgir Hossain.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

12149_2021_1676_MOESM1_ESM.tif

Supplementary file1 Supplementary Figure 1. Predicted pseudo probability curve for the stages of chronic kidney diseases. (TIF 66 kb)

12149_2021_1676_MOESM2_ESM.tif

Supplementary file2 Supplementary Figure 2: Output values for the artificial neural network using cross-entropy and softmax function in the output layers based on output label normal (TIF 127 kb)

12149_2021_1676_MOESM3_ESM.tif

Supplementary file3 Supplementary Figure 3: Output values for the artificial neural network using cross-entropy and softmax function in the output layers based on output label abnormal (TIF 101 kb)

Supplementary file4 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, A., Chowdhury, S.I., Sarker, S. et al. Artificial neural network for the prediction model of glomerular filtration rate to estimate the normal or abnormal stages of kidney using gamma camera. Ann Nucl Med 35, 1342–1352 (2021). https://doi.org/10.1007/s12149-021-01676-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-021-01676-7

Keywords

Navigation