Skip to main content

Advertisement

Log in

Monte Carlo simulation of the acquisition conditions for 177Lu molecular imaging of hepatic tumors

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

To examine the impact of acquisition time on Lutetium-177 (177Lu) single-photon emission computed tomography (SPECT) images using Monte Carlo simulation.

Methods

A gamma camera simulation based on the Monte Carlo method was performed to produce SPECT images. The phantom was modeled on a NEMA IEC BODY phantom including six spheres as tumors. After the administration of 7.4 GBq of 177Lu, radioactivity concentrations of the tumor/liver at 6, 24, and 72 h after administration were set to 1.85/0.201, 2.12/0.156, and 1.95/0.117 MBq/mL, respectively. In addition, the radioactivity concentrations of the tumor at 72 h after administration varied by 1/2, 1/4, and 1/8 when comparison was made. Acquisition times examined were 1.2, 1.5, 2, 3, 6, and 12 min. To assess the impact of collimators, SPECT data acquired at 72 h after the administration using six collimators of low-energy high-resolution (LEHR), extended low-energy general-purpose (ELEGP), medium-energy, and general-purpose (MEGP-1, MEGP-2, and MEGP-3) and high-energy general-purpose (HEGP) were examined. After prefiltering using a Butterworth filter, projection images were reconstructed using ordered subset expectation maximization. The detected photons were classified into direct rays, scattered rays, penetrating rays, and characteristic X-rays from lead. The image quality was evaluated through visual assessment, and physical assessment of contrast recovery coefficient (CRC) and contrast-to-noise ratio (CNR). In this study, the CNR threshold for detectability was assumed to be 5.0.

Results

To compare collimators, the highest sensitivity was observed with ELEGP, followed by LEHR and MEGP-1. The highest ratio of direct ray was also observed in ELEGP followed by MEGP-1. In comparison of the radioactivity concentration ratios of tumor/liver, CRC and CNR were significantly decreased with smaller radioactivity concentration ratios. This effect was greater with larger spheres. According to the visual assessment, the acquisition time of 6, 6, and 3 min or longer was required using ELEGP collimator at 6, 24, and 72 h after administration, respectively. Physical assessment based on CNR and CRC also suggested that 6, 6, and 3 min or longer acquisition time was necessary at 6, 24, and 72 h after administration.

Conclusion

177Lu-SPECT images generated via the Monte Carlo simulation suggested that the recommended acquisition time was 6 min or longer at 6 and 24 h and 3 min or longer at 72 h after administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kellett MA. 177Lu: DDEP Assessment of the decay scheme for an emerging radiopharmaceutical. Appl Radiat Isot. 2016;109:129–32.

    Article  CAS  Google Scholar 

  2. Kossert K, Näle OJ, Ott O, Dersch R. Activity determination and nuclear decay data of 177Lu. Appl Radiat Isot. 2012;70:2215–21.

    Article  CAS  Google Scholar 

  3. Sanders JC, Kuwert T, Hornegger J, Ritt P. Quantitative SPECT/CT imaging of 177Lu with in vivo validation in patients undergoing peptide receptor radionuclide therapy. Mol Imaging Biol. 2015;17:585–93.

    Article  CAS  Google Scholar 

  4. Gleisner KS, Brolin G, Sundlöv A, Mjekiqi E, Östlund K, Tennvall J, et al. Long-Term retention of 177Lu/177mLu-DOTATATE in patients investigated by g-spectrometry and g-camera imaging. J Nucl Med. 2016;56:976–84.

    Article  Google Scholar 

  5. Rudisile S, Gosewisch A, Wenter V, Unterrainer M, Böning G, Gildehaus FJ, et al. Salvage PRRT with 177Lu-DOTA-octreotate in extensively pretreated patients with metastatic neuroendocrine tumor (NET): dosimetry, toxicity, efficacy, and survival. BMC Cancer. 2019;19:788. https://doi.org/10.1186/s12885-019-6000-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Satapathy S, Mittal B. 177Lu-DOTATATE peptide receptor radionuclide therapy versus Everolimus in advanced pancreatic neuroendocrine tumors: a systematic review and meta-analysis. Nucl Med Commun. 2019;40(12):1195–203.

    Article  CAS  Google Scholar 

  7. Garkavij M, Nickel M, Gleisner KS, Ljungberg M, Ohlsson T, Wingårdh K, et al. 177Lu-[DOTA0, Tyr3] octreotate therapy in patients with disseminated neuroendocrine tumors: analysis of dosimetry with impact on future therapeutic strategy. Cancer. 2010;116:1084–92.

    Article  CAS  Google Scholar 

  8. Maaß C, Sachs JP, Hardiansyah D, Mottaghy FM, Kletting P, Glatting G. Dependence of treatment planning accuracy in peptide receptor radionuclide therapy on the sampling schedule. Eur J Nucl Med Mol Imaging. 2016;6:30. https://doi.org/10.1186/s13550-016-0185-8.

    Article  CAS  Google Scholar 

  9. Melis M, Swart JD, Visser MD, Berndsen SC, Koelewijin S, Valkema R, et al. Dynamic and static small-animal spect in rats for monitoring renal function after 177Lu-labeled Tyr3-octreotate radionuclide therapy. J Nucl Med. 2010;51:1962–68.

    Article  CAS  Google Scholar 

  10. Baum RP, Kulkarni HR, Schuchardt C, Singh A, Wirtz M, Wiessalla S, et al. Lutetium-177 PSMA radioligand therapy of metastatic castration-resistant prostate cancer: safety and efficacy. J Nucl Med. 2016. https://doi.org/10.2967/jnumed.115.168443.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Khawar A, Eppard E, Roesch F, Ahmadzadehfar H, Kürpig S, Meisenheimer M, et al. Biodistribution and post-therapy dosimetric analysis of [177Lu]Lu-DOTAZOL in patients with osteoblastic metastases: first results. EJNMMI Res. 2019;9:102. https://doi.org/10.1186/s13550-019-0566-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chicheportiche A, Haim SB, Glasberg SG, Oleinikov K, Meirovitz A, et al. Dosimetry after peptide receptor radionuclide therapy: impact of reduced number of post-treatment studies on absorbed dose calculation and on patient management. Eur J Nucl Med Mol Imaging. 2020;7:5. https://doi.org/10.1186/s40658-020-0273-8.

    Article  Google Scholar 

  13. Vallabhajosula S, Goldsmith SJ, Hamacher KA, Kostakoglu L, Konishi S, Gross DJ, et al. Prediction of myelotoxicity based on bone marrow radiation-absorbed dose: radioimmunotherapy studies using 90Y- and 177Lu-labeled J591 antibodies specific for prostate specific membrane antigen. J Nucl Med. 2005;46:850–58.

    CAS  PubMed  Google Scholar 

  14. Zaknun JJ, Bodei L, Mueller-Brand J, Pavel ME, Baum RP, Hörsch D, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40:800–16.

    Article  CAS  Google Scholar 

  15. Hijnen NM, Vries AD, Nicolay K, Grüll H. Dual-isotope 111In/177Lu SPECT imaging as a tool in molecular imaging tracer design. Contrast Media Mol Imaging. 2012;7:214–22.

    Article  CAS  Google Scholar 

  16. Meyer JV, Magill S, Lee J, Umetsu S, Flavell R. Detection of Metastatic Meningioma to the Liver Using 68Ga-DOTA-Octreotate PET/CT. Clin Nucl Med. 2018;43(9):338–40.

    Article  Google Scholar 

  17. Beauregard JM, Hofman MS, Pereira JM, Eu P, Hicks RJ. Quantitative 177Lu SPECT (QSPECT) imaging using a commercially available SPECT/CT system. Cancer Imaging. 2011;11:56–66.

    Article  Google Scholar 

  18. Hippeläinen E, Tenhunen M, Mäenpää H, Sohlberg A. Quantitative accuracy of 177Lu SPECT reconstruction using different compensation methods: phantom and patient studies. Eur J Nucl Med Mol Imaging. 2016;6:16. https://doi.org/10.1186/s13550-016-0172-0.

    Article  CAS  Google Scholar 

  19. Uribe CF, Esquinas PL, Tanguay J, Gonzalez M, Gaudin E, Beauregard JM, et al. Accuracy of 177Lu activity quantification in SPECT imaging: a phantom study. Eur J Nucl Med Mol Imaging. 2017;4:2. https://doi.org/10.1186/s40658-016-0170-3.

    Article  Google Scholar 

  20. Shcherbinin S, Bilska HP, Celler A, Birkenfeld B. Quantitative SPECT/CT reconstruction for 177Lu and 177Lu/90Y targeted radionuclide therapies. Phys Med Biol. 2012;57:5733–47.

    Article  CAS  Google Scholar 

  21. D’Arienzo M, Cazzato M, Cozzella ML, Cox M, D’Andra M, Fazio A, et al. Gamma camera calibration and validation for quantitative SPECT imaging with 177Lu. Appl Radiation and Isotopes. 2016;112:156–64.

    Article  Google Scholar 

  22. Uehara S. The development of a Monte Carlo code simulating electron-photon showers and its assessment by various transport benchmarks. Nucl Insrum Methods Phys Res B. 1986;14:559–70.

    Article  Google Scholar 

  23. Takahashi A, Himuro K, Yamashita Y, Komiya I, Baba S, Sasaki M. Monte Carlo simulation of PET and SPECT imaging of 90Y. Med Phys. 2015;42(4):1926–35.

    Article  CAS  Google Scholar 

  24. Tanaka M, Uehara S, Kojima A, Matsumoto M. Monte Carlo simulation of energy spectra for 123I imaging. Phys Med Biol. 2007;52:4409–25.

    Article  CAS  Google Scholar 

  25. Takahashi A, Miwa K, Sasaki M, Baba S. A Monte Carlo study on 223Ra imaging for unsealed radionuclide therapy. Med Phys. 2016;43(6):2965–74.

    Article  CAS  Google Scholar 

  26. Kälkner KM, Janson ET, Nilsson S, Carlsson S, Öberg K, Westrin JE, et al. Somatostatin receptor scintigraphy in patients with carcinoid tumors: comparison between radioligand uptake and tumor markers. Cancer Res. 1995;55:5801–4.

    Google Scholar 

  27. Kim Y, Yoo C, Oh SJ, Lee SJ, Kang J, Hwang HS, et al. Tumour-to-liver ratio determined by [68Ga] Ga-DOTA-TOC PET/CT as a prognostic factor of lanreotide efficacy for patients with well-differentiated gastroenteropancreatic-neuroendocrine tumours. EJNMMI Res. 2020;10:63. https://doi.org/10.1186/s13550-020-00651-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brolin G, Gustafsson J, Ljungberg M, Gleisner KS. Pharmacokinetic digital phantoms for accuracy assessment of image-based dosimetry in 177Lu-DOTATATE peptide receptor radionuclide therapy. Phys Med Biol. 2015;60:6131–49.

    Article  CAS  Google Scholar 

  29. Taniguchi T, Akamatsu G, Kasahara Y, Mitsumoto K, Baba S, Tsutsui Y, et al. Improvement in PET/CT image quality in overweight patients with PSF and TOF. Ann Nucl Med. 2015;29:71–77.

    Article  Google Scholar 

  30. Hashimoto N, Morita K, Tsutsui Y, Himuro K, Baba S, Sasaki M. Time-of-flight information improved the detectability of subcentimeter spheres using a clinical PET/CT scanner. J Nucl Med Technol. 2018;46(3):268–73.

    Article  Google Scholar 

  31. Rose A. Vision: human and electronic. Optical physics and engineering. ​New York: Plenum Press; 1973.

    Google Scholar 

  32. Cherry SR, Sorenson JA, Phelps ME. Physics in Nuclear Medicine. 3rd ed. Pennsylvania: Elsevier; 2003.

    Google Scholar 

  33. de Nijsa R, Lagerburg V, Klausena TL, Holm S. Improving quantitative dosimetry in 177Lu-DOTATATE SPECT by energy window-based scatter corrections. Nucl Med Commun. 2014;35:522–33.

    Article  Google Scholar 

  34. Ljungberg M, Celler A, Konijnenberg MW, Eckerman KF, Dewaraja YK, Sjögreen-Gleisner K. MIRD Pamphlet No 26: Joint EANM/MIRD guidelines for quantitative 177Lu SPECT. Applied for dosimetry of radiopharmaceutical therapy. J Nucl Med. 2016;57:151–62.

    Article  CAS  Google Scholar 

  35. Garske U, Sandström M, Johansson S, Sundin A, Granberg D, Eriksson B, et al. Minor changes in effective half-life during fractionated 177Lu-Octreotate therapy. Acta Oncol. 2012;51:86–96.

    Article  CAS  Google Scholar 

  36. Guerriero F, Ferrari ME, Botta F, Fioroni F, Grassi E, Versari A, et al. Kidney dosimetry in 177Lu and 90Y peptide receptor radionuclide therapy: influence of image timing, time-activity integration method, and risk factors. Bio Res Int. 2013. https://doi.org/10.1155/2013/935351.

    Article  Google Scholar 

  37. Bai B, Esser PD. The effect of edge artifacts on quantification of positron emission tomography. In: IEEE nuclear science symposium and medical imaging conference (NSS/MIC). 2010. p. 2263–66.

  38. Tran-Gia J, Lassmann M. Characterization of noise and resolution for quantitative 177Lu SPECT/CT with xSPECT quant. J Nucl Med. 2019;60:50–9.

    Article  CAS  Google Scholar 

  39. Daou D, Pointurier I, Coaguila C, Vilain D, Benada AW, Lebtahi R, et al. Performance of OSEM and depth-dependent resolution recovery algorithms for the evaluation of global left ventricular function in 201Tl gated myocardial perfusion SPECT. J Nucl Med. 2003;44:155–62.

    PubMed  Google Scholar 

  40. Kidera D, Kihara K, Akamatsu G, Mikasa S, Taniguchi T, Tsutsui Y, et al. The edge artifact in the point-spread function-based PET reconstruction at different sphere-to-background ratios of radioactivity. Ann Nucl Med.  2016;30:97–103.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiko Takahashi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sekikawa, Y., Funada, K., Akamatsu, G. et al. Monte Carlo simulation of the acquisition conditions for 177Lu molecular imaging of hepatic tumors. Ann Nucl Med 35, 823–833 (2021). https://doi.org/10.1007/s12149-021-01620-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-021-01620-9

Keywords

Navigation