Skip to main content
Log in

Myocardial sympathetic innervation, function, and oxidative metabolism in non-infarcted myocardium in patients with prior myocardial infarction

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

The purpose of this study was to investigate the relationship between sympathetic innervation, contractile function, and the oxidative metabolism of the non-infarcted myocardium in patients with prior myocardial infarction.

Methods

In 19 patients (14 men, 5 women, 65 ± 9 years) after prior myocardial infarction, sympathetic innervation was assessed by 11C-hydroxyephedrine (HED) positron emission tomography (PET). Oxidative metabolism was quantified using 11C-acetate PET. Left ventricular systolic function was measured by echocardiography with speckle tracking technique.

Results

The 11C-HED retention was positively correlated with left ventricular ejection fraction (LVEF) (r = 0.566, P < 0.05), and negatively with peak longitudinal strain in systole in the non-infarcted myocardium (r = −0.561, P < 0.05). Kmono, as an index of oxidative metabolism, was significantly correlated with rate pressure product (r = 0.649, P < 0.01), but not with 11C-HED retention (r = 0.188, P = 0.442). Furthermore, there was no significant correlation between Kmono and LVEF (r = 0.106, P = 0.666) or peak longitudinal strain in systole (r = −0.256, P = 0.291) in the non-infarcted myocardium. When the patients were divided into two groups based on the median value of left ventricular end-systolic volume index (LVESVI) (41 mL), there were no significant differences in age, sex, and rate pressure product between the groups. However, the large LVESVI group (>41 mL) was associated with reduced 11C-HED retention and peak longitudinal strain in systole, whereas Kmono was similar between the groups.

Conclusions

This study indicates that remodeled LV after myocardial infarction is associated with impaired sympathetic innervation and function even in the non-infarcted myocardial tissue. Furthermore, oxidative metabolism in the non-infarcted myocardium seems to be operated by normal regulatory mechanisms rather than pre-synaptic sympathetic neuronal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beadle RM, Williams LK, Abozguia K, Patel K, Leon FL, Yousef Z, et al. Metabolic manipulation in chronic heart failure: study protocol for a randomised controlled trial. Trials. 2011;12:140.

    Article  PubMed  CAS  Google Scholar 

  2. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990;81:1161–72.

    Article  PubMed  CAS  Google Scholar 

  3. Pfeffer MA, Braunwald E. Ventricular enlargement following infarction is a modifiable process. Am J Cardiol. 1991;68:127D–31D.

    Article  PubMed  CAS  Google Scholar 

  4. Ohte N, Narita H, Iida A, Fukuta H, Iizuka N, Hayano J, et al. Cardiac beta-adrenergic receptor density and myocardial systolic function in the remote noninfarcted region after prior myocardial infarction with left ventricular remodelling. Eur J Nucl Med Mol Imaging. 2012.

  5. Ohte N, Narita H, Iida A, Wakami K, Asada K, Fukuta H, et al. Impaired myocardial oxidative metabolism in the remote normal region in patients in the chronic phase of myocardial infarction and left ventricular remodeling. J Nucl Cardiol. 2009;16:73–81.

    Article  PubMed  Google Scholar 

  6. Bengel FM, Permanetter B, Ungerer M, Nekolla SG, Schwaiger M. Relationship between altered sympathetic innervation, oxidative metabolism and contractile function in the cardiomyopathic human heart; a non-invasive study using positron emission tomography. Eur Heart J. 2001;22:1594–600.

    Article  PubMed  CAS  Google Scholar 

  7. Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M, et al. Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr. 2004;17:1021–9.

    Article  PubMed  Google Scholar 

  8. Reisner SA, Lysyansky P, Agmon Y, Mutlak D, Lessick J, Friedman Z. Global longitudinal strain: a novel index of left ventricular systolic function. J Am Soc Echocardiogr. 2004;17:630–3.

    Article  PubMed  Google Scholar 

  9. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Int J Cardiovasc Imaging. 2002;18:539–42.

    PubMed  Google Scholar 

  10. Kusunose K, Yamada H, Nishio S, Mizuguchi Y, Choraku M, Maeda Y, et al. Validation of longitudinal peak systolic strain by speckle tracking echocardiography with visual assessment and myocardial perfusion SPECT in patients with regional asynergy. Circ J. 2010;75:141–7.

    Article  PubMed  Google Scholar 

  11. Schwaiger M, Kalff V, Rosenspire K, Haka MS, Molina E, Hutchins GD, et al. Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography. Circulation. 1990;82:457–64.

    Article  PubMed  CAS  Google Scholar 

  12. Matsunari I, Aoki H, Nomura Y, Takeda N, Chen WP, Taki J, et al. Iodine-123 metaiodobenzylguanidine imaging and carbon-11 hydroxyephedrine positron emission tomography compared in patients with left ventricular dysfunction. Circ Cardiovasc Imaging. 2010;3:595–603.

    Article  PubMed  Google Scholar 

  13. Uren NG, Crake T, Lefroy DC, de Silva R, Davies GJ, Maseri A. Reduced coronary vasodilator function in infarcted and normal myocardium after myocardial infarction. N Engl J Med. 1994;331:222–7.

    Article  PubMed  CAS  Google Scholar 

  14. Wolpers HG, Nguyen N, Rosenspire K, Haka M, Wieland DM, Schwaiger M. 11C-hydroxyephedrine as marker for neuronal catecholamine retention in reperfused canine myocardium. Coron Artery Dis. 1991;2:923–9.

    Google Scholar 

  15. Allman KC, Wieland DM, Muzik O, Degrado TR, Wolfe ER Jr, Schwaiger M. Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans. J Am Coll Cardiol. 1993;22:368–75.

    Article  PubMed  CAS  Google Scholar 

  16. Di Carli MF, Tobes MC, Mangner T, Levine AB, Muzik O, Chakroborty P, et al. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med. 1997;336:1208–15.

    Article  PubMed  Google Scholar 

  17. Ungerer M, Hartmann F, Karoglan M, Chlistalla A, Ziegler S, Richardt G, et al. Regional in vivo and in vitro characterization of autonomic innervation in cardiomyopathic human heart. Circulation. 1998;97:174–80.

    Article  PubMed  CAS  Google Scholar 

  18. Bengel FM, Ueberfuhr P, Schiepel N, Nekolla SG, Reichart B, Schwaiger M. Effect of sympathetic reinnervation on cardiac performance after heart transplantation. N Engl J Med. 2001;345:731–8.

    Article  PubMed  CAS  Google Scholar 

  19. Brown MA, Myears DW, Bergmann SR. Noninvasive assessment of canine myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography. J Am Coll Cardiol. 1988;12:1054–63.

    Article  PubMed  CAS  Google Scholar 

  20. Gropler RJ, Geltman EM, Sampathkumaran K, Perez JE, Schechtman KB, Conversano A, et al. Comparison of carbon-11-acetate with fluorine-18-fluorodeoxyglucose for delineating viable myocardium by positron emission tomography. J Am Coll Cardiol. 1993;22:1587–97.

    Article  PubMed  CAS  Google Scholar 

  21. Marwick TH, Schwaiger M. The future of cardiovascular imaging in the diagnosis and management of heart failure, part 1: tasks and tools. Circ Cardiovasc Imaging. 2008;1:58–69.

    Article  PubMed  Google Scholar 

  22. Matsunari I, Yoneyama T, Kanayama S, Matsudaira M, Nakajima K, Taki J, et al. Phantom studies for estimation of defect size on cardiac 18F SPECT and PET: implications for myocardial viability assessment. J Nucl Med. 2001;42:1579–85.

    PubMed  CAS  Google Scholar 

  23. Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA. Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation. 2000;102:1158–64.

    Article  PubMed  CAS  Google Scholar 

  24. Marwick TH. Measurement of strain and strain rate by echocardiography: ready for prime time? J Am Coll Cardiol. 2006;47:1313–27.

    Article  PubMed  Google Scholar 

  25. Geyer H, Caracciolo G, Abe H, Wilansky S, Carerj S, Gentile F, et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr. 2010;23:351–69. quiz 453-355.

    Article  PubMed  Google Scholar 

  26. Nahum J, Bensaid A, Dussault C, Macron L, Clemence D, Bouhemad B, et al. Impact of longitudinal myocardial deformation on the prognosis of chronic heart failure patients. Circ Cardiovasc Imaging. 2010;3:249–56.

    Article  PubMed  Google Scholar 

  27. Cohn JN. Abnormalities of peripheral sympathetic nervous system control in congestive heart failure. Circulation. 1990;82:I59–67.

    PubMed  CAS  Google Scholar 

  28. Kramer CM, Nicol PD, Rogers WJ, Suzuki MM, Shaffer A, Theobald TM, et al. Reduced sympathetic innervation underlies adjacent noninfarcted region dysfunction during left ventricular remodeling. J Am Coll Cardiol. 1997;30:1079–85.

    Article  PubMed  CAS  Google Scholar 

  29. Sakata K, Mochizuki M, Yoshida H, Nawada R, Ohbayashi K, Ishikawa J, et al. Cardiac sympathetic dysfunction contributes to left ventricular remodeling after acute myocardial infarction. Eur J Nucl Med. 2000;27:1641–9.

    Article  PubMed  CAS  Google Scholar 

  30. Bengel FM, Barthel P, Matsunari I, Schmidt G, Schwaiger M. Kinetics of 123I-MIBG after acute myocardial infarction and reperfusion therapy. J Nucl Med. 1999;40:904–10.

    PubMed  CAS  Google Scholar 

  31. Prichard BN, Owens CW, Smith CC, Walden RJ. Heart and catecholamines. Acta Cardiol. 1991;46:309–22.

    PubMed  CAS  Google Scholar 

  32. Bacaner M, Brietenbucher J, LaBree J. Prevention of ventricular fibrillation, acute myocardial infarction (myocardial necrosis), heart failure, and mortality by bretylium: is ischemic heart disease primarily adrenergic cardiovascular disease? Am J Ther. 2004;11:366–411.

    Article  PubMed  Google Scholar 

  33. Opie LH, Thandroyen FT, Muller C, Bricknell OL. Adrenaline-induced “oxygen-wastage” and enzyme release from working rat heart. Effects of calcium antagonism, beta-blockade, nicotinic acid and coronary artery ligation. J Mol Cell Cardiol. 1979;11:1073–94.

    Article  PubMed  CAS  Google Scholar 

  34. Goodwin GW, Ahmad F, Doenst T, Taegtmeyer H. Energy provision from glycogen, glucose, and fatty acids on adrenergic stimulation of isolated working rat hearts. Am J Physiol. 1998;274:H1239–47.

    PubMed  CAS  Google Scholar 

  35. Bengel FM, Ueberfuhr P, Ziegler SI, Nekolla SG, Odaka K, Reichart B, et al. Non-invasive assessment of the effect of cardiac sympathetic innervation on metabolism of the human heart. Eur J Nucl Med. 2000;27:1650–7.

    Article  PubMed  CAS  Google Scholar 

  36. Schafers M, Lerch H, Wichter T, Rhodes CG, Lammertsma AA, Borggrefe M, et al. Cardiac sympathetic innervation in patients with idiopathic right ventricular outflow tract tachycardia. J Am Coll Cardiol. 1998;32:181–6.

    Article  PubMed  CAS  Google Scholar 

  37. Wichter T, Schafers M, Rhodes CG, Borggrefe M, Lerch H, Lammertsma AA, et al. Abnormalities of cardiac sympathetic innervation in arrhythmogenic right ventricular cardiomyopathy: quantitative assessment of presynaptic norepinephrine reuptake and postsynaptic beta-adrenergic receptor density with positron emission tomography. Circulation. 2000;101:1552–8.

    Article  PubMed  CAS  Google Scholar 

  38. Caldwell JH, Link JM, Levy WC, Poole JE, Stratton JR. Evidence for pre- to postsynaptic mismatch of the cardiac sympathetic nervous system in ischemic congestive heart failure. J Nucl Med. 2008;49:234–41.

    Article  PubMed  Google Scholar 

  39. Kakuchi H, Sasaki T, Ishida Y, Komamura K, Miyatake K. Clinical usefulness of 123I meta-iodobenzylguanidine imaging in predicting the effectiveness of beta blockers for patients with idiopathic dilated cardiomyopathy before and soon after treatment. Heart. 1999;81:148–52.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Ishikawa prefectural government.

Conflict of interest

None of the authors have conflicts to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Matsunari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoki, H., Matsunari, I., Nomura, Y. et al. Myocardial sympathetic innervation, function, and oxidative metabolism in non-infarcted myocardium in patients with prior myocardial infarction. Ann Nucl Med 27, 523–531 (2013). https://doi.org/10.1007/s12149-013-0716-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-013-0716-6

Keywords

Navigation