Skip to main content
Log in

Left ventricular metabolism, function, and sympathetic innervation in men and women with type 1 diabetes

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

In type I diabetes (T1DM), alterations in LV function may occur due to changes in innervation, metabolism, and efficiency.

Objectives

We evaluated the association between sympathetic nerve function, oxidative metabolism, resting blood flow, LV efficiency and function in healthy diabetics, and assessed gender differences.

Methods

Cross-sectional study of 45 subjects with T1DM, 60% females, age 34 ± 13 years, and 10 age-matched controls. Positron emission tomography (PET) imaging with [11C]acetate and [11C]meta-hydroxyephedrine was performed, in addition to cardiac magnetic resonance imaging.

Results

There were no significant differences in LV function, innervation, or oxidative metabolism between T1DM and controls. Cardiac oxidative metabolism was positively associated with higher levels of sympathetic activation, particularly in women. Diabetic women had significantly lower efficiency compared with diabetic men. Resting flow was significantly higher in diabetic women compared with diabetic men, and tended to be higher in female controls as well.

Conclusions

Measures of myocardial function, metabolism, blood flow, and sympathetic activation were preserved in young, otherwise healthy, T1DM patients. However, T1DM women presented with greater myocardial oxidative metabolism requirements than men. Ongoing studies are evaluating changes over time.

Antecedentes

En la Diabetes Mellitus tipo 1 (T1DM) los cambios en la función ventricular izquierda pueden deberse a cambios en la inervación, metabolismo, y eficiencia.

Objetivos

Evaluamos la asociación entre la inervación simpática, el metabolismo oxidativo, flujo sanguíneo en reposo, la eficiencia y función del ventrículo izquierdo en diabéticos sanos, de acuerdo a diferencia de género.

Métodos

Estudio transversal de 45 sujetos con DM tipo 1 : 60% mujeres (34años +−13) y 10 controles pareados por edad. Se realizó un estudio de PET / CT con 11C acetato y 11C meta hydroxyephedrina. Adicionalmente se obtuvieron imágenes con resonancia magnética.

Resultados

No se encontraron diferencias en la función, inervación y metabolismo del ventrículo izquierdo entre los pacientes con DM tipo 1 y el grupo control. El metabolismo oxidativo cardiaco tuvo una asociación positiva con niveles altos de activación simpática, particularmente en las mujeres. Las mujeres diabéticas tuvieron una eficiencia significativamente menor comparadas con los hombres diabéticos. El flujo en reposo fue significativamente mayor en mujeres diabéticas comparadas con los hombres diabéticos, la tendencia fue igualmente mayor en las mujeres del grupo mayor.

Conclusiones

Las medidas de función miocárdica, metabolismo, flujo miocárdico y activación simpática estuvieron conservados en pacientes jóvenes con DM tipo 1 por lo demás sanos. Sin embargo las mujeres con DM tipo 1 tienen mayores requerimientos de metabolismo oxidativo miocárdico que los hombres. Estudios prospectivos están evaluando estos cambios en el transcurso del tiempo.

背景

在I型糖尿病(T1DM)患者中,由于心脏自主神经支配、心脏代谢以及左心室射血效率的改变,左心室功能也会发生相应的变化。

目的

评估健康糖尿病患者心脏交感神经功能、心脏氧化代谢、静息血流量、左心室射血效率与左心室功能之间的关系,并分析不同性别之间的差异。

方法

本研究采用横断面法,入选45例I型糖尿病患者,年龄在 34±13 岁之间,其中 60% 为女性,10例年龄相当的正常人作为对照组。除了心脏磁共振成像外,本研究还使用了醋酸盐 ([11C]acetate)和元-羟基麻黄碱 ([11C]meta-hydroxyephedrine) 作为显影剂的正电子发射型计算机断层显像 (PET) 技术。

结果

与对照组相比,I型糖尿病患者的左心室功能,心脏神经支配或氧化代谢均无显著差异。心脏的氧化代谢与交感神经活性呈正相关,女性尤其如此。女性糖尿病患者的左心室射血效率明显低于男性糖尿病患者。女性糖尿病患者静息血流量明显高于男性,在对照组中女性静息血流量亦有偏高的趋势。

结论

健康年轻人与健康的I型糖尿病患者左心室功能、心脏氧化代谢、静息血流量以及交感神经活性相同。然而,女性I型糖尿病患者较男性有更高的心脏氧化代谢。正在开展的后续研究将进一步评估时间对上述指标的影响。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

CAN:

Cardiac autonomic neuropathy

CMR:

Cardiac magnetic resonance

LV:

Left ventricular

Eff:

Efficiency

PET:

Positron emission tomography

[11C]HED:

[11C]Meta-hydroxyephedrine

RI:

Retention index

rMBF:

Resting myocardial blood flow

SVI:

Stroke volume index

SBP:

Systolic blood pressure

T1DM:

Type 1 Diabetes Mellitus

WMI:

Work-metabolic index

References

  1. Pop-Busui R, Cleary PA, Braffett BH, et al. Association between cardiovascular autonomic neuropathy and left ventricular dysfunction: DCCT/EDIC study (Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications). J Am Coll Cardiol. 2013;61:447–54.

    Article  PubMed  Google Scholar 

  2. Pop-Busui R, Kirkwood I, Schmid H, et al. Sympathetic dysfunction in type 1 diabetes: Association with impaired myocardial blood flow reserve and diastolic dysfunction. J Am Coll Cardiol. 2004;44:2368–74.

    Article  CAS  PubMed  Google Scholar 

  3. Sacre JW, Franjic B, Jellis CL, et al. Association of cardiac autonomic neuropathy with subclinical myocardial dysfunction in type 2 diabetes. JACC Cardiovasc Imaging. 2010;3:1207–15.

    Article  PubMed  Google Scholar 

  4. Kahn JK, Zola B, Juni JE, et al. Radionuclide assessment of left ventricular diastolic filling in diabetes mellitus with and without cardiac autonomic neuropathy. J Am Coll Cardiol. 1986;7:1303–9.

    Article  CAS  PubMed  Google Scholar 

  5. Vered A, Battler A, Segal P, et al. Exercise-induced left ventricular dysfunction in young men with asymptomatic diabetes mellitus (diabetic cardiomyopathy). Am J Cardiol. 1984;54:633–7.

    Article  CAS  PubMed  Google Scholar 

  6. Zarich SW, Arbuckle BE, Cohen LR, et al. Diastolic abnormalities in young asymptomatic diabetic patients assessed by pulsed Doppler echocardiography. J Am Coll Cardiol. 1988;12:114–20.

    Article  CAS  PubMed  Google Scholar 

  7. Drake-Holland AJ, Van der Vusse GJ, Roemen TH, et al. Chronic catecholamine depletion switches myocardium from carbohydrate to lipid utilisation. Cardiovasc Drugs Ther. 2001;15:111–7.

    Article  CAS  PubMed  Google Scholar 

  8. Fang ZY, Yuda S, Anderson V, et al. Echocardiographic detection of early diabetic myocardial disease. J Am Coll Cardiol. 2003;41:611–7.

    Article  CAS  PubMed  Google Scholar 

  9. Francis GS. Diabetic cardiomyopathy: Fact or fiction? Heart. 2001;85:247–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Frustaci A, Kajstura J, Chimenti C, et al. Myocardial cell death in human diabetes. Circ Res. 2000;87:1123–32.

    Article  CAS  PubMed  Google Scholar 

  11. Wolpers HG, Buck A, Nguyen N, et al. An approach to ventricular efficiency by use of carbon 11-labeled acetate and positron emission tomography. J Nucl Cardiol. 1994;1:262–9.

    Article  CAS  PubMed  Google Scholar 

  12. Sciacca RR, Akinboboye O, Ling Chou R, et al. Measurement of myocardial blood flow with PET using 1-11C-acetate. J Nucl Med. 2001;42:63–70.

    CAS  PubMed  Google Scholar 

  13. Di Carli MF, Bianco-Batlles D, Landa ME, et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation. 1999;100:813–9.

    Article  PubMed  Google Scholar 

  14. Smith-Palmer J, Brändle M, Trevisan R, et al. Assessment of the association between glycemic variability and diabetes-related complications in type 1 and type 2 diabetes. Diabetes Res Clin Pract. 2014;105:273–84.

    Article  CAS  PubMed  Google Scholar 

  15. Huxley RR, Peters SAE, Mishra GD, et al. Risk of all-cause mortality and vascular events in women versus men with type 1 diabetes: A systematic review and meta-analysis. Lancet Diabetes Endocrinol. 2015;3:198–206.

    Article  PubMed  Google Scholar 

  16. Jaiswal M, McKeon K, Comment N, et al. Association between impaired cardiovascular autonomic function and hypoglycemia in patients with type 1 diabetes. Diabetes Care. 2014;37:2616–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pop-Busui R, Low PA, Waberski BH, et al. Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in type 1 diabetes mellitus: The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study (DCCT/EDIC). Circulation. 2009;119:2886–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Spallone V, Ziegler D, Freeman R, et al. Cardiovascular autonomic neuropathy in diabetes: Clinical impact, assessment, diagnosis, and management. Diabetes Metab Res Rev. 2011;27(7):639–53.

    Article  PubMed  Google Scholar 

  19. Stevens MJ, Raffel DM, Allman KC, et al. Cardiac sympathetic dysinnervation in diabetes: Implications for enhanced cardiovascular risk. Circulation. 1998;98:961–8.

    Article  CAS  PubMed  Google Scholar 

  20. van den Hoff J, Burchert W, Borner AR, et al. [1-(11)C]Acetate as a quantitative perfusion tracer in myocardial PET. J Nucl Med. 2001;42:1174–82.

    PubMed  Google Scholar 

  21. Hutchins GD, Schwaiger M, Rosenspire KC, et al. Non-invasive quantification of regional myocardial blood flow in the human heart using [13N]ammonia and dynamic positron emission tomography imaging. J Am Coll Cardiol. 1990;15:1032–42.

    Article  CAS  PubMed  Google Scholar 

  22. Buck A, Wolpers HG, Hutchins GD, et al. Effect of carbon-11-acetate recirculation on estimates of myocardial oxygen consumption by PET. J Nucl Med. 1991;32:1950–7.

    CAS  PubMed  Google Scholar 

  23. Rawlings R, Yuan L, Shi H, et al. Dynamic Stress Factor (DySF): A significant predictor of severe hypoglycemic events in children with type 1 diabetes. J Diabetes Metab. 2012;3:177.

    PubMed  PubMed Central  Google Scholar 

  24. Spallone V, Bellavere F, Scionti L, et al. Recommendations for the use of cardiovascular tests in diagnosing diabetic autonomic neuropathy. Nutr Metab Cardiovas Dis NMCD. 2011;21:69–78.

    Article  CAS  Google Scholar 

  25. Ziegler D, Laux G, Dannehl K, et al. Assessment of cardiovascular autonomic function: Age-related normal ranges and reproducibility of spectral analysis, vector analysis, and standard tests of heart rate variation and blood pressure responses. Diabet Med. 1992;9:166–75.

    Article  CAS  PubMed  Google Scholar 

  26. Givertz MM, Sawyer DB, Colucci WS. Antioxidants and myocardial contractility: Illuminating the “Dark Side” of beta-adrenergic receptor activation? Circulation. 2001;103:782–3.

    Article  CAS  PubMed  Google Scholar 

  27. Liedtke AJ, Renstrom B, Nellis SH, et al. Mechanical and metabolic functions in pig hearts after 4 days of chronic coronary stenosis. J Am Coll Cardiol. 1995;26:815–25.

    Article  CAS  PubMed  Google Scholar 

  28. Schaffer SW, Tan BH, Wilson GL. Development of a cardiomyopathy in a model of noninsulin-dependent diabetes. Am J Physiol. 1985;248:H179–85.

    CAS  PubMed  Google Scholar 

  29. Herrero P, Peterson LR, McGill JB, et al. Increased myocardial fatty acid metabolism in patients with type 1 diabetes mellitus. J Am Coll Cardiol. 2006;47:598–604.

    Article  CAS  PubMed  Google Scholar 

  30. Peterson LR, Herrero P, McGill J, et al. Fatty acids and insulin modulate myocardial substrate metabolism in humans with type 1 diabetes. Diabetes. 2008;57:32–40.

    Article  CAS  PubMed  Google Scholar 

  31. Spyrou NM, Sharaf JM, Rajeswaran S. Developments in tomographic methods for biological trace element research. Biol Trace Elem Res. 1994;43–45:55–63.

    Article  PubMed  Google Scholar 

  32. Vinik AI, Ziegler D. Diabetic cardiovascular autonomic neuropathy. Circulation. 2007;115:387–97.

    Article  PubMed  Google Scholar 

  33. Rijzewijk LJ, van der Meer RW, Lamb HJ, et al. Altered myocardial substrate metabolism and decreased diastolic function in nonischemic human diabetic cardiomyopathy: Studies With cardiac positron emission tomography and magnetic resonance imaging. J Am Coll Cardiol. 2009;54:1524–32.

    Article  CAS  PubMed  Google Scholar 

  34. Rodrigues B, Cam MC, McNeill JH. Myocardial substrate metabolism: Implications for diabetic Cardiomyopathy. J Mol Cell Cardiol. 1995;27:169–79.

    Article  CAS  PubMed  Google Scholar 

  35. Peterson LR, Soto PF, Herrero P, et al. Sex differences in myocardial oxygen and glucose metabolism. J Nucl Cardiol. 2007;14:573–81.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Herrero P, McGill J, Lesniak DS, et al. PET detection of the impact of dobutamine on myocardial glucose metabolism in women with type 1 diabetes mellitus. J Nucl Cardiol. 2008;15:791–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Peterson LR, Saeed IM, McGill JB, et al. Sex and type 2 diabetes: Obesity-independent effects on left ventricular substrate metabolism and relaxation in humans. Obesity (Silver Spring, Md). 2012;20:802–10.

    Article  CAS  Google Scholar 

  38. Peterson LR, Soto PF, Herrero P, et al. Impact of gender on the myocardial metabolic response to obesity. JACC Cardiovasc Imaging. 2008;1:424–33.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Stramba-Badiale M, Fox KM, Priori SG, et al. Cardiovascular diseases in women: A statement from the policy conference of the European Society of Cardiology. Eur Heart J. 2006;27:994–1005.

    Article  PubMed  Google Scholar 

  40. Duvernoy CS, Meyer C, Seifert-Klauss V, et al. Gender differences in myocardial blood flow dynamics: Lipid profile and hemodynamic effects. J Am Coll Cardiol. 1999;33:463–70.

    Article  CAS  PubMed  Google Scholar 

  41. Kaufmann PA, Camici PG. Myocardial blood flow measurement by PET: Technical aspects and clinical applications. J Nucl Med. 2005;46:75–88.

    PubMed  Google Scholar 

  42. Collins P, Rosano GM, Sarrel PM, et al. 17 beta-Estradiol attenuates acetylcholine-induced coronary arterial constriction in women but not men with coronary heart disease. Circulation. 1995;92:24–30.

    Article  CAS  PubMed  Google Scholar 

  43. Han TS, Sattar N, Williams K, et al. Prospective study of C-reactive protein in relation to the development of diabetes and metabolic syndrome in the Mexico City Diabetes Study. Diabetes Care. 2002;25:2016–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

These studies are supported by R01 HL 102334 to RPB.

Disclosures

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodica Pop-Busui MD, PhD.

Additional information

See related editorial, doi:10.1007/s12350-016-0507-2.

JNC thanks Weihua Zhou, PhD, University of Southern Mississippi, for providing the Chinese abstract.

JNC thanks Dr. E. Alexanderson, UNAM, Mexico for providing the Spanish abstract.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 688 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duvernoy, C.S., Raffel, D.M., Swanson, S.D. et al. Left ventricular metabolism, function, and sympathetic innervation in men and women with type 1 diabetes. J. Nucl. Cardiol. 23, 960–969 (2016). https://doi.org/10.1007/s12350-016-0434-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12350-016-0434-2

Keywords

Navigation