Skip to main content
Log in

Computer-assisted program for water Calco-Carbonic equilibrium computation

  • Software Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

The risk of scaling or corrosion of pipes and household appliances has attracted special interest from the part of drinking water supply systems designers. To address these deficiencies, the Calco-Carbonic balance in water must be accurately maintained and evaluated using either the graphic methods, appreciation indexes, or computer programs. In this work, we developed a computer-assisted software for the computation of the Calco-Carbonic equilibrium of water based on Legrand Poirier’s model. This software program, established in FORTRAN GNU with a graphical interface written with python using pyQt library pyqt5, provides two practical functions: evaluation of water Calco-Carbonic equilibrium numerically and graphically, and computation of the reagent rate required to make water neither aggressive nor encrusting. The program validation was carried out by comparing our results with those of the case considered by Legrand et al. (1981). In addition, the implementation of the program with two cases of water coming from reverse osmosis desalination plants of brackish water in the Sahara region and seawater in the Tipaza province shows for both stations, the technique of remineralization by carbonation is the best. Moreover, the results allowed us to choose between two remineralisations techniques among the eight techniques allowed applied in the case of brackish water desalination. It consists in adding lime and CO2 or infiltration on an uncalcined dolomite bed. In the case of seawater, we applied the same carbonation remineralisation technique where the final Ca2+ value was set at 8 °F (80 mg/lCaCO3). These techniques ensured a quality of produced water that complies with drinking water standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Algerian Energy Company (AEC) (2021) website: https://www.aec.dz. Accessed 20 April 2021

  • Al-Mashakbeh HM (2017) The influence of lithostratigraphy on the type and quality of stored water in mujib reservoir-Jordan. J Environ Prot 8(04):568

    Article  Google Scholar 

  • Alipour V, Dindarloo K, Mahvi AH, Rezaei L (2015) Evaluation of corrosion and scaling tendency indices in a drinking water distribution system: a case study of Bandar Abbas city, Iran. J Water Health 13(1):203–209

    Article  Google Scholar 

  • ASTM D4582-91 (1996) Standard Practice for Calculation and Adjustment of the Stiff and Davis Stability Index for Reverse Osmosis, ASTM International, West Conshohocken, PA, 1991, https://www.astm.org

  • ASTM D3739-94 (1998) Standard Practice for Calculation and Adjustment of the Langelier Saturation Index for Reverse Osmosis, ASTM International, West Conshohocken, PA, 1998, https://www.astm.org

  • Bouabdelli S, Meddi M, Zeroual A, Alkama R (2020) Hydrological drought risk recurrence under climate change in the karst area of Northwestern Algeria. J Water Clim Chang 11(S1):164–188

    Article  Google Scholar 

  • Butler JN (1991) Carbon dioxide equilibria and their applications. CRC Press, Boca Raton

  • Caldwell DH, Lawrence WB (1953) Water softening and conditioning problems. Ind Eng Chem 45(3):535–548

    Article  Google Scholar 

  • Davil MF, Mahvi AH, Norouzi M, Mazloomi S, Amarluie A, Tardast A, Karamitabar Y (2009) Survey of corrosion and scaling potential produced water from Ilam water treatment plant. World Appl Sci J 7(11):11–24

    Google Scholar 

  • Delion N, Mauguin G, Corsin P (2004) Importance and impact of post treatments on design and operation of SWRO plants. Desalination 165:323–334

    Article  Google Scholar 

  • Deshommes E, Laroche L, Nour S, Cartier C, Prévost M (2010) Source and occurrence of particulate lead in tap water. Water Res 44(12):3734–3744

    Article  Google Scholar 

  • DuPont (1992) Permasep products engineering manual. DuPont Company, Wilmington. Bulletin 2050

  • Elfil H, Roques H (2001) Role of hydrate phases of calcium carbonate on the scaling phenomenon. Desalination 137(1–3):177–186

    Article  Google Scholar 

  • Giagnorio M, Ricceri F, Tiraferri A (2019) Desalination of brackish groundwater and reuse of wastewater by forward osmosis coupled with nanofiltration for draw solution recovery. Water Res. https://doi.org/10.1016/j.watres.2019.01.014

    Article  Google Scholar 

  • Hallopeau J (1960) Les équilibres carboniques dans les eaux. Terres et eaux 35(2):4

    Google Scholar 

  • Hadfi A (2012) Evaluation du pouvoir entartrant des eaux du secteur agricole du grand Agadir et mise en évidence de l’effet inhibiteur de quelques engrais phosphatés. these de Doctorat, Université Ibn Zohr, faculté des sciences, Agadir, Maroc

  • Hamrouni B, Dhahbi M (2003) Calco-carbonic equilibrium calculation. Desalination 152(1–3):167–174

    Article  Google Scholar 

  • Hamrouni B, Dhahbi M (2001) Thermodynamic description of saline waters—prediction of scaling limits in desalination processes. Desalination 137(1–3):275–284

    Article  Google Scholar 

  • Haidari AH, Gonzalez-Olmos R, Heijman SGJ (2019) Scaling after remineralisation of reverse osmosis permeate. Desalination 467:57–63

    Article  Google Scholar 

  • Hunter JD (2007) Matplotlib: A 2D graphics environment. Comput Sci Eng 9(3):90–95

    Article  Google Scholar 

  • Imran SA, Dietz JD, Mutoti G, Taylor JS, Randall AA (2005) Modified Larsons ratio incorporating temperature, water age, and electroneutrality effects on red water release. J Environ Eng 131(11):1514–1520

    Article  Google Scholar 

  • Kelkar PS, Joshi VA, Ansari MH, Manivel U (2003) Performance evaluation of reverse osmosis desalination plants for rural water supply in a developing country–a case study. Environ Monit Assess 89(3):243–261

    Article  Google Scholar 

  • Kurdi M, Ferdows MS, Maghsoudi A (2015) Sensitivity of corrosion and scaling indices based on ions; case study Iran. Water Quality Exposure Health 7(3):363–372

    Article  Google Scholar 

  • Langelier WF (1936) The analytical control of anti-corrosion water treatment. J Am Water Works Assoc 28(10):1500–1521

    Article  Google Scholar 

  • Larson TE, Skold RV (1958) Laboratory studies relating mineral quality of water to corrosion of steel and cast iron. Corrosion 14(6):43–46

    Article  Google Scholar 

  • Legrand L, Poirier G (1976) Chimie des eaux naturelles Ed. Eyrolles, Paris

  • Legrand L, Leroy P, De Gennes PG (1995) Prévention de la corrosion et de l’entartrage dans les réseaux de distribution d’eau. CIFEC, George Town

  • Legrand L, Poirier G, et Leroy P (1981) Les équilibres carboniques et l’équilibre calco-carbonique dans les eaux naturelles. Editions Eyrolles, Paris

    Google Scholar 

  • Leitz F, Guerra K (2013) Water chemistry analysis for water conveyance, Storage, and Desalination Projects: Manuals and Standards Program. US Department of the Interior, Bureau of Reclamation.

  • Li Z, Sun X, Huang L, Liu D, Yu L, Wu H, Wei D (2017) Phosphate adsorption and precipitation on calcite under calco-carbonic equilibrium condition. Chemosphere 183:419–428

    Article  Google Scholar 

  • Liang J, Deng A, Xie R, Gomez M, Hu J, Zhang J, Adin A (2014) Impact of elevated Ca2+/Mg2 + concentrations of reverse osmosis membrane desalinated seawater on the stability of water pipe materials. J Water Health 12(1):24–33

    Article  Google Scholar 

  • Loewenthal RE, Morrison I, Wentzel MC (2004) Control of corrosion and aggression in drinking water systems. Water Sci Technol 49(2):9–18

    Article  Google Scholar 

  • Masters S, Wang H, Pruden A, Edwards MA (2015) Redox gradients in distribution systems influence water quality, corrosion, and microbial ecology. Water Res 68:140–149

    Article  Google Scholar 

  • Mesdaghinia A, Nabizadeh Nodehi R, Nasseri S, Imran SA, Samadi MT, Hadi M (2016) Potential for iron release in drinking water distribution system: a case study of Hamedan city, Iran. Desal Water Treat 57(31):14461–14472

    Article  Google Scholar 

  • Mgombezi D, Vegi MR (2020) An investigation on effectiveness of grafted potato starch as an adsorbent for hard water treatment. J Chem 2020. https://doi.org/10.1155/2020/4050862

  • Mirzabeygi M, Naji M, Yousefi N, Shams M, Biglari H, Mahvi AH (2016) Evaluation of corrosion and scaling tendency indices in water distribution system: a case study of Torbat Heydariye, Iran. Desalin Water Treat 57(54):25918–25926

    Article  Google Scholar 

  • (2011) Normes algériennes de la qualité des eaux destinées à la consommation humaines. J Officiel de la Republique Algerienne 18

  • Leroy P (2012) Corrosivité des eaux, critères de protection des ouvrages par le carbonate de calcium. Eur J Water Qual 43(2):75–87

    Article  Google Scholar 

  • Puckorius PR, Broke JM (1991) A new practical index for calcium carbonate scale prediction in cooling tower system. Corrosion 47:280–284

    Article  Google Scholar 

  • Quist-Jensen CA, Macedonio F, Drioli E (2015) Membrane technology for water production in agriculture: Desalination and wastewater reuse. Desalination 364:17–32

    Article  Google Scholar 

  • Remini B (2017) A new management approach of dams siltation. LARHYSS J 31:51–81

    Google Scholar 

  • Ryznar JW (1944) A new index for determining amount of calcium carbonate scale formed by a water. J Am Water Works Assoc 36(4):472–483

    Article  Google Scholar 

  • Rooklidge SJ, Ketchum LH Jr (2002) Corrosion control enhancement from a dolomite-amended slow sand filter. Water Res 36(11):2689–2694

    Article  Google Scholar 

  • Ramya P, Babu AJ, Reddy ET, Rao LV, District YSRK (2015) A study on the estimation of hardness in ground water samples by EDTA tritrimetric method of veterinary public health and epidemiology college of veterinary science. Proddatur Int J Recent Sci Res 6:4505–4507

    Google Scholar 

  • River Bank Computing (2012) “PyQT.” http://www.riverbankcomputing.com/software/pyqt. Accessed: 20 April 2021

  • Ryznar JW (1944) A new index for determining amount of calcium carbonate scale formed by a water. J Am Water Works Ass 36(4):472–483

    Article  Google Scholar 

  • SAFEGE (2010) Etude de la valorisation des eaux de la Sahara Septentrional –option hauts plateaux.mission 2 traitement par osmose inverse. ONID,MRE. Algérie

  • Shams M, Mohamadi A, Sajadi SA (2012) Evaluation of corrosion and scaling potential of water in rural water supply distribution networks of Tabas, Iran. World Appl Sci J 17(11):1484–1489

    Google Scholar 

  • Soltani AA, Bermad A, Boutaghane H, Oukil A, Abdalla O, Hasbaia M, Lefkir A (2020) An integrated approach for assessing surface water quality: Case of Beni Haroun dam (Northeast Algeria). Environ Monit Assess 192(10):1–17

    Article  Google Scholar 

  • Soltani AA, Oukil A, Boutaghane H, Bermad A, Boulassel MR (2021) A new methodology for assessing water quality, based on data envelopment analysis: Application to Algerian dams. Ecol Ind 121:106952

    Article  Google Scholar 

  • Stiff HA Jr, Davis LE (1952) A method for predicting the tendency of oil field waters to deposit calcium carbonate. J Petrol Technol 4(09):213–216

    Article  Google Scholar 

  • Tchobanoglous G, Burton FL et al (2003) Wastewater engineering. McGraw Hill, New York

    Google Scholar 

  • Zeroual A, Assani AA, Meddi M, Alkama R (2019) Assessment of climate change in Algeria from 1951 to 2098 using the Köppen–Geiger climate classification scheme. Clim Dyn 52(1):227–243

    Article  Google Scholar 

  • Zhu F (2016) Chemical composition, health effects, and uses of water caltrop. Trends Food Sci Technol 49:136–145

    Article  Google Scholar 

  • Biyoune M. G., Atbir A., Bari H., Hassnaoui L., Mongach E., Khadir A., Boukbir L., Bellajrou R., Elhadek M. (2017) Remineralization of permeate water by calcite bed in the Daoura’s plant (south of Morocco). The European Physical Journal Special Topics 226(5):931–941. https://doi.org/10.1140/epjst/e2016-60181-6

    Article  Google Scholar 

  • Drouiche Nadjib, Ghaffour Noreddine, Naceur Mohamed Wahib, Mahmoudi Hacene, Ouslimane Tarik (2011) Reasons for the Fast Growing Seawater Desalination Capacity in Algeria. Water Resources Management 25(11):2743–2754. https://doi.org/10.1007/s11269-011-9836-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Abdelkader HACHEMI and Ayoub ZEROUAL made the conceptualization of the work. Abdelkader HACHEMI designed the methodology, did the data analysis, and wrote the codes and the graphical interface of the software. Ayoub ZEROUAL made the review and editing of the paper.

Corresponding author

Correspondence to Ayoub Zeroual.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Communicated by H. Babaie.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 149 KB)

ESM 2

(RAR 115 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hachemi, A., Zeroual, A. Computer-assisted program for water Calco-Carbonic equilibrium computation. Earth Sci Inform 15, 689–704 (2022). https://doi.org/10.1007/s12145-021-00703-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-021-00703-5

Keywords

Navigation