Skip to main content

Advertisement

Log in

LiDAR-based three-dimensional street landscape indices for urban habitability

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Streets are like the skeleton of a city. They not only guarantee urban traffic functions and facilitate business activities, but also perform an integral component of the urban landscape. Urban habitability, that is to judge whether a place is suitable for people to live, has been a popular topic for years. A mobile laser scanning (MLS) system can obtain close-range three-dimensional (3D) light detection and ranging (LiDAR) data of the sides and surfaces of urban streets. This study explored the possibility of analyzing urban street space landscapes based on MLS LiDAR, and proposed four LiDAR-based 3D street landscape indices for urban habitability: 3D green biomass, street enclosure, sunshine index, and landscape diversity index. Experiments performed in Jianye District of Nanjing (China) showed that these four street landscape indices accorded well with the actual situation and they reflected user perception of street space. Thus, the proposed indices could help us to assess urban landscape from a 3D perspective. To sum up, this study suggest a new type of data for landscape study, and provide an automatic information acquirement for urban habitability assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Aimaiti Y, Kasimu A, Jing G (2016) Urban landscape extraction and analysis based on optical and microwave ALOS satellite data. Earth Sci Inf 9(4):425–435

    Article  Google Scholar 

  • Alexander C, Ishikawa S, Silverstein M (1977) A pattern language: towns, buildings, construction. Oxford University Press, Oxford

    Google Scholar 

  • Alonzo M, Bookhagen B, Roberts DA (2014) Urban tree species mapping using hyperspectral and lidar data fusion. Remote Sens Environ 148:70–83

    Article  Google Scholar 

  • Antrop M, Stobbelaar DJ, Mansvelt JDV (2000) Background concepts for integrated landscape analysis. Agric Ecosyst Environ 77(1–2):17–28

    Article  Google Scholar 

  • Arriaza M, Cañas-Ortega JF, Cañas-Madueño JA, Ruiz-Aviles P (2004) Assessing the visual quality of rural landscapes. Landsc Urban Plan 69(1):115–125

    Article  Google Scholar 

  • Badland H, Schofield G (2005) Transport, urban design, and physical activity: an evidence-based update. Transp Res Part D: Transp Environ 10(3):177–196

    Article  Google Scholar 

  • Carmona M (2010) Public places - urban spaces: the dimensions of urban design. Architectural

  • Clay GR, Smidt RK (2004) Assessing the validity and reliability of descriptor variables used in scenic highway analysis. Landsc Urban Plan 66(4):239–255

    Article  Google Scholar 

  • Daniel TC (2001) Whither scenic beauty? Visual landscape quality assessment in the 21st century. Landsc Urban Plan 54(1–4):267–281

    Article  Google Scholar 

  • Ersoy E, Jorgensen A, Warren PH (2015) Measuring the spatial structure of urban land uses. The case of Sheffield, UK. J Environ Prot Ecol 16(1):393–401

    Google Scholar 

  • Garré S, Meeus S, Gulinck H (2009) The dual role of roads in the visual landscape: a case-study in the area around Mechelen (Belgium). Landsc Urban Plan 92(2):125–135

    Article  Google Scholar 

  • Gerstenberg T, Hofmann M (2016) Perception and preference of trees: a psychological contribution to tree species selection in urban areas. Urban For Urban Green 15:103–111

    Article  Google Scholar 

  • Hummel S, Hudak AT, Uebler EH, Falkowski MJ, Megown KA (2011) A comparison of accuracy and cost of LiDAR versus stand exam data for landscape management on the Malheur national forest. J For 109(5):267–273

    Google Scholar 

  • Jacobs AB (1993) Great streets. The MIT Press, Boston

  • Jochem A, Höfle B, Rutzinger M (2011) Extraction of vertical walls from mobile laser scanning data for solar potential assessment. Remote Sens 3(4):650–667

    Article  Google Scholar 

  • Kiray ZD, Yildizci AC (2014) Impact of landscape architectural practices on the environment. J Environ Prot Ecol 15(2):565–573

    Google Scholar 

  • Liang X, Hyyppä J, Kukko A, Kaartinen H, Jaakkola A, Yu X (2014) The use of a mobile laser scanning system for mapping large forest plots. IEEE Geosci Remote Sens Lett 11(9):1504–1508

    Article  Google Scholar 

  • Liu B, Fan R (2014) Quantitative analysis of the visual attraction elements of landscape space. J Nanjing For Univ 38(4):149–152

    Google Scholar 

  • Lukač N, Žalik B (2013) GPU-based roofs' solar potential estimation using LiDAR data. Comput Geosci 52:34–41

    Article  Google Scholar 

  • Lukač N, Žlaus D, Seme S, Žalik B, Štumberger G (2013) Rating of roofs’ surfaces regarding their solar potential and suitability for PV systems, based on LiDAR data. Appl Energy 102:803–812

    Article  Google Scholar 

  • MacFaden SW, O’Neil-Dunne JP, Royar AR, Lu JW, Rundle AG (2012) High-resolution tree canopy mapping for new York City using LiDAR and object-based image analysis. J Appl Remote Sens 6(1):063567

  • Morar T, Radoslav R, Spirdon LC, Pacurar L (2014) Assessing pedestrian accessibility to green space using GIS. Transylvanian Rev Adm Sci 42E:116–139

    Google Scholar 

  • Mullaney K, Lucke T, Trueman SJ (2015) A review of benefits and challenges in growing street trees in paved urban environments. Landsc Urban Plan 134:157–166

    Article  Google Scholar 

  • Ozkan UY (2014) Assessment of visual landscape quality using IKONOS imagery. Environ Monit Assess 186(7):4067

    Article  Google Scholar 

  • Stamps AE (2005) Enclosure and safety in urbanscapes. Environ Behav 37(1):102–133

    Article  Google Scholar 

  • Swatantran A, Dubayah R, Roberts D, Hofton M, Blair JB (2011) Mapping biomass and stress in the sierra Nevada using LiDAR and hyperspectral data fusion. Remote Sens Environ 115(11):2917–2930

    Article  Google Scholar 

  • Swimmer E, Whiteman J, Taintor R (1999) Byway beginnings: understanding, inventorying, and evaluating a byway's intrinsic qualities. National Scenic Byways Program Publication, Washington DC

  • Wang Y, Cheng L, Chen Y, Wu Y, Li M (2016) Building point detection from vehicle-borne LiDAR data based on voxel group and horizontal hollow analysis. Remote Sens 8(5):419

    Article  Google Scholar 

  • World Health Organization (2010) Urban planning, environment and health: from evidence to policy action http://www.euro.who.int/__data/assets/pdf_file/0004/114448/E93987.pdf?ua=1. Accessed 22 Apr 2012

  • Yang B, Fang L, Li J (2013) Semi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds. ISPRS J Photogramm Remote Sens 79(5):80–93

    Article  Google Scholar 

  • Yao T, Yang X, Zhao F, Wang Z, Zhang Q, Jupp D, Lovell J, Culvenor D, Newnham G, Ni-Meister W, Schaaf C, Woodcock C, Wang J, Li X, Strahler A (2011) Measuring forest structure and biomass in New England forest stands using echidna ground-based LiDAR. Remote Sens Environ 115(11):2965–2974

    Article  Google Scholar 

  • Yokoya N, Nakazawa S, Matsuki T, Iwasaki A (2014) Fusion of hyperspectral and LiDAR data for landscape visual quality assessment. IEEE J Sel Top Appl Earth Obs Remote Sens 7(6):2419–2425

    Article  Google Scholar 

  • Yu S, Wu B, Tan W, Yue W, Hu C, Wu J, Yu B (2015) Estimation of 3D urban forest green volume using VLS data and high-resolution remote sensing images. Sci Surv Mapp 40(9):82–87

    Google Scholar 

  • Zhou J, Sun T (1995) Study on remote sensing model of three-dimensional green biomass and the estimation of environmental benefits of greenery. J Remote Sens 10(3):162–174

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 41622109, and Grant 41371017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Chen.

Additional information

Responsible editor: H. A. Babaie

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Chen, S., Chu, S. et al. LiDAR-based three-dimensional street landscape indices for urban habitability. Earth Sci Inform 10, 457–470 (2017). https://doi.org/10.1007/s12145-017-0309-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-017-0309-3

Keywords

Navigation