Skip to main content

Visual Detection and Interpretation of Cultural Remnants on the Königstuhl Hillside in Heidelberg Using Airborne and Terrestrial LiDAR Data

  • Chapter
  • First Online:
Digital Geoarchaeology

Part of the book series: Natural Science in Archaeology ((ARCHAEOLOGY))

Abstract

LiDAR-based data acquisition, also referred to as laser scanning (LS), is an exceedingly used procedure for investigating site-specific details and spatial context. The main product of LiDAR scanning is digital elevation models (DEMs) derived from recorded 3D point clouds. Two major outcomes of DEMs are digital terrain models (DTM) of the bare earth and digital surface models (DSM) with canopy details. For detection and management of information from the past, especially, the DTM reveals important information for understanding, investigating, and managing sites and landscapes of cultural heritage interest.

In this case study, the advantages and disadvantages between airborne and terrestrial LiDAR DTM data are assessed. The investigations resulted in a differentiated perspective on scale of view and concluded that highest resolution is not always the best practice for visual detection of cultural heritage monuments in areas with complex canopy details, such as in dense vegetation. Because dense vegetation can disturb and distort terrain and surface segmentation to such a degree, the information retrieved might be more difficult to understand compared to visualization with less canopy details. Thus, the best practice is presently established in a combination of the two approaches. Minor details are lost in the ALS data, but large-scale context elude us by only using TLS data.

Our study revealed both major and minor details of infrastructure in the landscape from the eighteenth and nineteenth century. Many of the structures and details in the landscape have not been described or documented before and provide new understanding on cultural activity on the Königstuhl hillside in Heidelberg. Hereby especially two cellar structures were of particular interest to the investigations carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Bofinger J, Hesse R (2011) As far as the laser can reach… Laminar analysis of LiDAR detected structures as a powerful instrument for archaeological heritage management in Baden-Württemberg, Germany. In: Cowley DC (ed) Remote sensing for archaeological heritage management. EAC Occasional Paper 5:161–171

    Google Scholar 

  • Crutchley S (2010) The light fantastic: using airborne lidar in archaeological survey. In: ISPRS TC VII symposium – 100 years ISPRS IAPRS, Vienna, Austria, vol XXXVIII, part 7B, pp 193–198, 5–7 July 2010

    Google Scholar 

  • Derwein H (1940) Die Flurnamen von Heidelberg – Eine Stadtgeschichte. Carl Winter’s Universitätsbuchhandlung, Heidelberg

    Google Scholar 

  • Devereux BJ, Amable GS, Crow P (2008) Visualisation of lidar terrain models for archaeological feature detection. Antiquity 82:470–479

    Article  Google Scholar 

  • Doneus M (2013a) Openness as visualization technique for interpretative mapping of airborne lidar derived digital terrain models. Remote Sens 5:6427–6442

    Article  Google Scholar 

  • Doneus M (2013b) Die hinterlassene Landschaft – Prospektion und Interpretation in der Landschaftsarchäologie. Mitteilungen der Prähistorischen Kommission 78

    Google Scholar 

  • Doneus M, Briese C (2006) Full waveform airborne laser scanning as a tool for archaeological reconnaissance. In: From space to place. Proceedings of the 2nd international conference on remote sensing in archaeology, BAR international series, 1568, pp 99–105

    Google Scholar 

  • Doneus M, Briese C, Studnicka N (2010) Analysis of full-waveform ALS data by simultaneously acquired TLS data: towards an advanced DTM generation in wooded areas. In: ISPRS TC VII symposium – 100 years ISPRS, IAPRS, Vienna, Austria, vol. XXXVIII, part 7B, pp 193–198, 5–7 July 2010

    Google Scholar 

  • Grøn O, Aurdal L, Christensen F, Tømmervik H, Loska A (2003) Locating invisible cultural heritage sites in agricultural fields – evaluation of methods for satellite monitoring of cultural heritage sites, results 2003. Digital Copy Studio AS, Oslo

    Google Scholar 

  • Hesse R (2013) The changing picture of archaeological landscapes: lidar prospection over very large areas as part of a cultural heritage strategy. In: Opitz RS, Cowley DC (eds) Interpreting archaeological topography, Occasional publication of the AARG vol 5. Oxbow Books, Oxford, pp 171–183

    Google Scholar 

  • Hesse R (2014) 2 and 3 dimensions. Blog [Online]. https://blog23d.wordpress.com/. Accessed 17 May 2015

  • Lorentzen T (1907) Heidelberg und Umgebung. Map, von Knoblauch & Dürr, Stuttgart. http://www.ub.uni-heidelberg.de/helios/fachinfo/www/math/heidelberg/PlanHD/lore-1907.jpg. Accessed 17 May 2015

  • Mandlburger G, Otepka J, Karel W, Wagner W, Pfeifer N (2009) Orientation and processing of airborne laser scanning data (OPALS) – concept and first results of comprehensive ALS software. ISPRS workshop, laser scanning ’09, vol 38. Paris, France, pp 55–60

    Google Scholar 

  • Mertens M, Naumann D, Plate U (2013) Kulturdenkmale in Baden-Württemberg. Stadtkreis Heidelberg. Vol 1. Jan Thorbecke Verlag der Schwabenverlag AG, Ostfildern

    Google Scholar 

  • OpenStreetMap Data is available under the Open Database License. http://www.openstreetmap.org/copyright

  • Opitz R, Cowley D (2013) Interpreting archaeological topography: 3D data, visualisation and observation. Oxbow Books, Oxford

    Google Scholar 

  • Trier ØD, Zortea M (2012) Semi-automatic detection of cultural heritage in LIDAR data. In: Proceedings of the 4th GEOBIA, Rio de Janeiro, Brazil, 7–9 May 2012, pp 123–128

    Google Scholar 

  • Trier ØD, Zortea M, Tonning C, Loska A (2013) Grave mounds discovered by automatic heap detection method. In: Procedings of the 4th EARSeL workshop on cultural and natural heritage matera, Italy, 6–7 June 2013, pp 1–16

    Google Scholar 

  • Zakšek K, Oštir K, Kokalj Z (2011) Sky-view factor as a relief visualisation technique. Remote Sens 3:398–415

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Hjalte Maack Raun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Raun, K.H.M., Pfeiffer, M., Höfle, B. (2018). Visual Detection and Interpretation of Cultural Remnants on the Königstuhl Hillside in Heidelberg Using Airborne and Terrestrial LiDAR Data. In: Siart, C., Forbriger, M., Bubenzer, O. (eds) Digital Geoarchaeology. Natural Science in Archaeology. Springer, Cham. https://doi.org/10.1007/978-3-319-25316-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25316-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25314-5

  • Online ISBN: 978-3-319-25316-9

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics