Skip to main content
Log in

Global earth isostatic model using smoothed Airy-Heiskanen and Vening Meinesz hypotheses

  • Research Article
  • Published:
Earth Science Informatics Aims and scope Submit manuscript

Abstract

Isostatic hypotheses are used for different purposes in geophysics and geodesy. The Erath crustal thickness modelling is more complicated than the classical isostatic models. In this study we try to modify Airy-Hesiskanen model, utilizing a smoothing factor, to a model with regional or global isostatic model through a modern solution of the gravimetric-isostatic Vening Meinesz model and CRUST.0. In Airy-Hesiskanen’s theory there is no correlation between neighbouring crustal columns, while this must be the case in reality due to the elasticity of the Earth. The idea is to keep the simplicity of the Airy-Heiskanen model, because it needs only the topographic data, and change the model which becomes to a model with regional/global isostatic model. The isostatic assumption for compensating the topographic potential is incomplete, as there are other geophysical phenomena which should be considered. Using the isostatic hypothesis for determining the depth of crust causes some disturbing signals in the gravity anomaly (approximately 285 mGal), which influence the crustal thickness determination. In this paper a simple method use for removing these effects. Spherical harmonic potential coefficients of the topographic compensation masses are used for modifying Airy-Heiskanen’s model in a least-square adjustment procedure by estimating smoothing factor. The numerical analysis shows that below degree 10, the modified Airy-Hesiskanen and Vening Meinesz models are close together. Smoothing factors for modifying the Airy-Hesiskanen model vary from 0.75 to 0.64 between degrees 200 and 2159.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abd-Elmotaal H (1993) Vening Meinesz Moho Depths: Traditional, Exact and Approximated. ManuscriptaGeodaetica 18:171–181

    Google Scholar 

  • Abd-Elmotaal H (2000) Vening Meinesz inverse isostatic problem with local and global bouguer anomalies. J Geod 74:390–398

    Article  Google Scholar 

  • Bagherbandi M (2011) Impact of compensating mass on the topographic mass: A study using Isostatic and Non-Isostatic earth crustal models, Acta Geod. Geoph. Hung., Vol. 47(1), pp. 1–23 (2012). doi:10.1556/AGeod.47.2012.1.3

  • Bagherbandi M. and Sjöberg L.E. (2012) Non-Isostatic Effects on Crustal Thickness: A Study Using CRUST2.0 in Fennoscandia. Physics of the Earth and Planetary Interiors 200-201 (2012) 37–44. doi:10.1016/j.pepi.2012.04.001

  • Bjerhammar A (1962) On an explicit solution of the gravimetric boundary value problem for an ellipsoidal surface of reference. Tech rep. The Royal Institute of Technology, Division of Geodesy, Stockholm

    Google Scholar 

  • Bassin C, Laske G, Masters TG (2000) The current limits of resolution for surface wave tomography in North America. EOS Trans AGU 81:F897

    Google Scholar 

  • Čadek O, Martinec Z (1991) Spherical harmonic expansion of the earth’s crustal thickness up to degree and order 30. StudiaGeoph et Geod 35:151–165

    Article  Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical Geodesy. WH Freeman, New York

    Google Scholar 

  • Heiskanen WA, and Vening Meinesz FA (1958) The Earth and its gravity field. McGraw-Hill Book Company, Inc

  • Lemoine FG et al (1998) The development of the joint NASA GSFC and the mational imagery and mapping agency (NIMA) Geopotential Model EGM96, NASA/TP-1998-206861. Lithospheric Dynamic Atlas of China, 1989. China Cartographic Publishing House, Beijing

    Google Scholar 

  • Moritz H (1980) Advanced physical geodesy. Wichmann, Karlsruhe

    Google Scholar 

  • Moritz H (1990) The figure of the Earth. H Wichmann, Karlsruhe

    Google Scholar 

  • Mooney WD, Laske G, Masters TG (1998) CRUST 5.1: a global crustal model at 5 × 5 deg. J Geophys Res 103:727–747

    Article  Google Scholar 

  • Pavlis N, Factor K, and Holmes SA (2007) Terrain-related gravimetric quantities computed for the next EGM. Presented at the 1st international symposium of the international gravity service 2006, Agust 28- September 1, Istanbul, Turkey

  • Pavlis N, Holmes SA, Kenyon SC, and Factor JK (2008) An Earth Gravitational model to degree 2160: EGM08. Presented at the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, April 13–18, 2008

  • Rummel R, Rapp RH, Sünkel H, Tscherning CC (1988) Comparisons of global topographicisostatic models to the Earth’s observed gravity field. Report No. 388. Department of Geodetic Science and Surveying, Ohio State University, Columbus

    Google Scholar 

  • Sjöberg LE (1998a) The exterior Airy/Heiskanen topographic-isostatic gravity potential anomaly and the effect of analytical continuation in Stokes’ formula. J Geod 72:654–662

    Article  Google Scholar 

  • Sjöberg LE (1998b) On the Pratt and Airy models of isostatic geoid undulations. J Geodyn 26(1):137–147

    Article  Google Scholar 

  • Sjöberg LE (2009) Solving Vening Meinesz-Moritz inverse problem in isostasy. Geophys J Int 179(3):1527–1536. doi:10.1111/j.1365-246X.2009.04397.x

    Article  Google Scholar 

  • Sun W, Sjöberg LE (2001) Convergence and optimal truncation of binomial expansions used in isostatic compensations and terrain corrections. J Geod 74(627–636):2001

    Google Scholar 

  • Sünkel H (1985) An isostatic earth model. In: The Dept. of Geodetic Science and Surveying Report No. 367, The OhioStateUniversity, Columbus

  • Vening Meinesz FA (1931) Une nouvelle methode pour la reduction isostatiqueregionale de l’intensite de la pesanteur. Bull Géod 29:33–51

    Article  Google Scholar 

  • Vening Meinesz FA (1939) Fundamental tables for regional isostatic reduction of gravity value. Publ. NetherlandsAcad. Sci., sec. 1, DI. 17(3), 1–44

Download references

Acknowledgements

The author acknowledges Professor Lars E. Sjöberg for his guidance and helps. The Swedish National Space Board (SNSB) is acknowledged for financial support of this work for the project no. 76/10:1. The unknowns’ reviewers are cordially appreciated for their constructive comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Bagherbandi.

Additional information

Communicated by: Hassan A. Babaie

Appendix

Appendix

Spectral and closed form of the kernel \( K(\psi, s) \)

Here we summarize Sjöberg’s (2009) derivation of the spectral and closed forms of \( K\left( {\psi, s} \right) \). In order to obtain the spectral form of \( K\left( {\psi, s} \right) \)the polynomial expression of the inverse distance should be inserted in Eq. (8a). It is defined by the following series in Legendre’s polynomials, P n (t):

$$ l_P^{{ - 1}} = \sum\limits_{{n = 0}}^{\infty } {\frac{{{{r}^n}}}{{r_P^{{n + 1}}}}} {{P}_n}(t);\,\,t = \cos \psi, \,\,{\text{for}}\,\,{{r}_P} \geqslant R \geqslant r $$
(A.1)

Residual compensating potential based on Eq. (A.1) can be written (Sjöberg 2009)

$$ \begin{gathered} d{{V}_C}(P) = k\sum\limits_{{n = 0}}^{\infty } {\iint\limits_{\sigma } {\int\limits_{{R - T}}^R {\frac{{{{r}^{{n + 2}}}}}{{r_P^{{n + 1}}}}} }} dr{{P}_n}(t)d\sigma \hfill \\ { } = k\sum\limits_{{n = 0}}^{\infty } {\frac{{{{R}^2}}}{{n + 3}}} {{\left( {\frac{R}{{{{r}_P}}}} \right)}^{{n + 1}}}\iint\limits_{\sigma } {\left[ {1 - {{s}^{{n + 3}}}} \right]}{{P}_n}(t)d\sigma . \hfill \\ \end{gathered} $$
(A.2)

After radial differentiation of Eq. (A.2) and performing some simplifications the spectral form of the kernel function of Eq. (9) becomes

$$ K\left( {\psi, s} \right) = \sum\limits_{{n = 0}}^{\infty } {\frac{{n + 1}}{{n + 3}}} \left( {1 - {{s}^{{n + 3}}}} \right){{P}_n}(t). $$
(A.3)

\( K(\psi, s) \) can be rewritten in a closed form (Sjöberg 2009):

$$ \begin{gathered} K\left( {\psi, s} \right) = \frac{1}{{{{L}_0}}} - \frac{{{{s}^3}}}{L} + 3t(1 - s) + \left( {{{s}^2} + 3st} \right)L - \left( {1 + 3t} \right){{L}_0} \hfill \\ { } + \left( {3{{t}^2} - 1} \right)\left( {s\ln \frac{{s - t + L}}{{1 - t}} - \ln \frac{{1 - t + {{L}_0}}}{{1 - t}}} \right), \hfill \\ \end{gathered} $$
(A.4)

where we have introduced

$$ L_0^{{ - 1}} = \sum\limits_{{n = 0}}^{\infty } {{{P}_n}(t) = } \frac{1}{{\sqrt {{2(1 - t)}} }} = \frac{1}{{2\sin \frac{\psi }{2}}}, $$
(A.5)

and

$$ {{L}^{{ - 1}}} = \sum\limits_{{n = 0}}^{\infty } {{{s}^n}{{P}_n}(t)} = \frac{1}{{\sqrt {{1 - 2st + {{s}^2}}} }}. $$
(A.6)

As s < 1, Eq. (A.4) shows that \( K\left( {\psi, s} \right) \) is a regular function all over the sphere. In addition, s is close to 1, the function is close to zero, but for t = 1 strong singularity occurs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagherbandi, M. Global earth isostatic model using smoothed Airy-Heiskanen and Vening Meinesz hypotheses. Earth Sci Inform 5, 93–104 (2012). https://doi.org/10.1007/s12145-012-0099-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12145-012-0099-6

Keywords

Navigation