American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). American Psychiatric Association.
Andrews, J., Robinson, D., & Hutchinson, J. (2017). Closing the gap? Trends in educational attainment and Disadvantage. Education Policy Institute https://epi.org.uk/wp-content/uploads/2017/08/Closing-the-Gap_EPI-.pdf
Barbaranelli, C., Caprara, G. V., Rabasca, A., & Pastorelli, C. (2003). A questionnaire for measuring the big five in late childhood. Personality and Individual Differences, 34(4), 645–664. https://doi.org/10.1016/S0191-8869(02)00051-X
Article
Google Scholar
Bateman, L. B. (2014). Socioeconomic status, measurement. In W. C. Cockerham, R. Dingwall, & S. Quah (Eds.), The Wiley Blackwell encyclopedia of health, illness, behavior, and society (pp. 2227–2232). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118410868.wbehibs302
Bellman, R. (1957). Dynamic programming. Princeton University Press.
Benjamins, J. S., Dalmaijer, E. S., Ten Brink, A. F., Nijboer, T. C. W., & Van der Stigchel, S. (2019). Multi-target visual search organisation across the lifespan: Cancellation task performance in a large and demographically stratified sample of healthy adults. Aging, Neuropsychology, and Cognition, 26(5), 731–748. https://doi.org/10.1080/13825585.2018.1521508
Article
Google Scholar
Bignardi, G., Dalmaijer, E. S., Anwyl-Irvine, A. L., & Astle, D. E. (2021). Collecting big data with small screens: Group tests of children’s cognition with touchscreen tablets are reliable and valid. Behavior Research Methods, 53, 1515–1529. https://doi.org/10.3758/s13428-020-01503-3
Birch, S. H., & Ladd, G. W. (1997). The teacher-child relationship and children’s early school adjustment. Journal of School Psychology, 35(1), 61–79. https://doi.org/10.1016/S0022-4405(96)00029-5
Article
Google Scholar
Bor, W., Najman, J. M., Andersen, M. J., O’callaghan, M., Williams, G. M., & Behrens, B. C. (1997). The relationship between low family income and psychological disturbance in young children: An Australian longitudinal study. Australian & New Zealand Journal of Psychiatry, 31(5), 664–675. https://doi.org/10.3109/00048679709062679
Article
Google Scholar
Borman, G. D., & Overman, L. T. (2004). Academic resilience in mathematics among poor and minority students. The Elementary School Journal, 104(3), 177–195.
Article
Google Scholar
Borsboom, D., & Cramer, A. O. J. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9(1), 91–121. https://doi.org/10.1146/annurev-clinpsy-050212-185608
Article
PubMed
Google Scholar
Brito, N. H., & Noble, K. G. (2014). Socioeconomic status and structural brain development. Frontiers in Neuroscience, 8. https://doi.org/10.3389/fnins.2014.00276
Brooks-Gunn, J., & Duncan, G. J. (1997). The effects of poverty on children. The Future of Children, 7(2), 55–71. https://doi.org/10.2307/1602387
Article
PubMed
Google Scholar
Capron, C., & Duyme, M. (1989). Assessment of effects of socio-economic status on IQ in a full cross-fostering study. Nature, 340(6234), 552–554. https://doi.org/10.1038/340552a0
Article
Google Scholar
Cattell, R. B. (1940). A culture free intelligence test. Journal of Educational Psychology, 31, 161–180.
Article
Google Scholar
Chapman, B. P., Fiscella, K., Kawachi, I., & Duberstein, P. R. (2010). Personality, socioeconomic status, and all-cause mortality in the United States. American Journal of Epidemiology, 171(1), 83–92. https://doi.org/10.1093/aje/kwp323
Article
PubMed
Google Scholar
Claro, S., Paunesku, D., & Dweck, C. S. (2016). Growth mindset tempers the effects of poverty on academic achievement. Proceedings of the National Academy of Sciences, 113(31), 8664–8668. https://doi.org/10.1073/pnas.1608207113
Article
Google Scholar
Costello, E. J., Keeler, G. P., & Angold, A. (2001). Poverty, race/ethnicity, and psychiatric disorder: A study of rural children. American Journal of Public Health, 91(9), 1494–1498. https://doi.org/10.2105/AJPH.91.9.1494
Article
PubMed
PubMed Central
Google Scholar
Dalmaijer, E. S., Nord, C. L., & Astle, D. E. (2020). Statistical power for cluster analysis. ArXiv:2003.00381 [Cs, q-bio, stat]. http://arxiv.org/abs/2003.00381
Dalmaijer, E. S., Van der Stigchel, S., Nijboer, T. C. W., Cornelissen, T. H. W., & Husain, M. (2015). CancellationTools: All-in-one software for administration and analysis of cancellation tasks. Behavior Research Methods, 47(4), 1065–1075. https://doi.org/10.3758/s13428-014-0522-7
Article
PubMed
Google Scholar
D’Angiulli, A., Herdman, A., Stapells, D., & Hertzman, C. (2008). Children’s event-related potentials of auditory selective attention vary with their socioeconomic status. Neuropsychology, 22(3), 293–300. https://doi.org/10.1037/0894-4105.22.3.293
Article
PubMed
Google Scholar
Dearing, E., McCartney, K., & Taylor, B. A. (2001). Change in family income-to-needs matters more for children with less. Child Development, 72(6), 1779–1793. https://doi.org/10.1111/1467-8624.00378
Article
PubMed
Google Scholar
Dolean, D., Melby-Lervåg, M., Tincas, I., Damsa, C., & Lervåg, A. (2019). Achievement gap: Socioeconomic status affects reading development beyond language and cognition in children facing poverty. Learning and Instruction, 63, 101218. https://doi.org/10.1016/j.learninstruc.2019.101218
Article
Google Scholar
Duckworth, A. L., Peterson, C., Matthews, M. D., & Kelly, D. R. (2007). Grit: Perseverance and passion for long-term goals. Journal of Personality and Social Psychology, 92(6), 1087–1101. https://doi.org/10.1037/0022-3514.92.6.1087
Article
PubMed
Google Scholar
Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7(1), 1–26. https://doi.org/10.1214/aos/1176344552
Article
Google Scholar
Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and their accuracy: A tutorial paper. Behavior Research Methods, 50(1), 195–212. https://doi.org/10.3758/s13428-017-0862-1
Article
PubMed
Google Scholar
Eskreis-Winkler, L., Shulman, E. P., Beal, S. A., & Duckworth, A. L. (2014). The grit effect: Predicting retention in the military, the workplace, school and marriage. Frontiers in Psychology, 5. https://doi.org/10.3389/fpsyg.2014.00036
Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: Attentional control theory. Emotion, 7(2), 336–353. https://doi.org/10.1037/1528-3542.7.2.336
Article
Google Scholar
Farah, M. J., Shera, D. M., Savage, J. H., Betancourt, L., Giannetta, J. M., Brodsky, N. L., Malmud, E. K., & Hurt, H. (2006). Childhood poverty: Specific associations with neurocognitive development. Brain Research, 1110(1), 166–174. https://doi.org/10.1016/j.brainres.2006.06.072
Article
PubMed
Google Scholar
Feinstein, L., & Bynner, J. (2004). The importance of cognitive development in middle childhood for adult socioeconomic status, mental health, and problem behavior. Child Development, 75(5), 1329–1339.
Article
Google Scholar
Fritz, J., Stochl, J., Fried, E. I., Goodyer, I. M., van Borkulo, C. D., Wilkinson, P. O., & van Harmelen, A.-L. (2019). Unravelling the complex nature of resilience factors and their changes between early and later adolescence. BMC Medicine, 17(1), 203. https://doi.org/10.1186/s12916-019-1430-6
Article
PubMed
PubMed Central
Google Scholar
Furlong, M. J., You, S., Renshaw, T. L., O’Malley, M. D., & Rebelez, J. (2013). Preliminary development of the positive experiences at school scale for elementary school children. Child Indicators Research, 6(4), 753–775. https://doi.org/10.1007/s12187-013-9193-7
Article
Google Scholar
Gebuis, T., & Reynvoet, B. (2011). Generating nonsymbolic number stimuli. Behavior Research Methods, 43(4), 981–986. https://doi.org/10.3758/s13428-011-0097-5
Article
PubMed
Google Scholar
Gottfried, A. W., Gottfried, A. E., Bathurst, K., Guerin, D. W., & Parramore, M. M. (2003). Socioeconomic status in children’s development and family environment: Infancy through adolescence. In M. H. Bornstein & R. H. Bradley (Eds.), Socioeconomic status, parenting and child development (pp. 189–207). Lawrence Erlbaum.
Gregg, P., & Machin, S. (2001). Childhood experiences, educational attainment and adult labour market performance. In K. Vleminckx & T. Smeeding (Eds.), child well-being, child poverty and child policy in modern nations: What do we know? The policy press.
Griggs, J., & Walker, R. (2008). The costs of child poverty for individuals and society. Joseph Rowntree Foundation https://www.jrf.org.uk/report/costs-child-poverty-individuals-and-society-literature-review
Gunnell, D., Kidger, J., & Elvidge, H. (2018). Adolescent mental health in crisis. BMJ, k2608. https://doi.org/10.1136/bmj.k2608
Günther, T., Holtkamp, K., Jolles, J., Herpertz-Dahlmann, B., & Konrad, K. (2004). Verbal memory and aspects of attentional control in children and adolescents with anxiety disorders or depressive disorders. Journal of Affective Disorders, 82(2), 265–269. https://doi.org/10.1016/j.jad.2003.11.004
Article
PubMed
Google Scholar
Hamadani, J. D., Tofail, F., Huda, S. N., Alam, D. S., Ridout, D. A., Attanasio, O., & Grantham-McGregor, S. M. (2014). Cognitive deficit and poverty in the first 5 years of childhood in Bangladesh. PEDIATRICS, 134(4), e1001–e1008. https://doi.org/10.1542/peds.2014-0694
Article
PubMed
Google Scholar
Hanscombe, K. B., Trzaskowski, M., Haworth, C. M. A., Davis, O. S. P., Dale, P. S., & Plomin, R. (2012). Socioeconomic status (SES) and Children’s intelligence (IQ): In a UK-representative sample SES moderates the environmental, not genetic, effect on IQ. PLoS One, 7(2), e30320. https://doi.org/10.1371/journal.pone.0030320
Article
PubMed
PubMed Central
Google Scholar
Hennig, C. (2015). What are the true clusters? Pattern Recognition Letters, 64, 53–62. https://doi.org/10.1016/j.patrec.2015.04.009
Article
Google Scholar
Treasury, H. M. (2008). Ending child poverty: everybody’s business. HM Treasury.
Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179–185. https://doi.org/10.1007/BF02289447
Article
PubMed
Google Scholar
Hwang, M. H., Lim, H. J., & Ha, H. S. (2018). Effects of grit on the academic success of adult female students at Korean Open University. Psychological Reports, 121(4), 705–725. https://doi.org/10.1177/0033294117734834
Article
PubMed
Google Scholar
Ivcevic, Z., & Brackett, M. (2014). Predicting school success: Comparing conscientiousness, grit, and emotion regulation ability. Journal of Research in Personality, 52, 29–36. https://doi.org/10.1016/j.jrp.2014.06.005
Article
Google Scholar
Johnston, D., Propper, C., Pudney, S., & Shields, M. (2014). Child mental health and educational attainment: Multiple observers and the measurement error problem: Multiple observers and measurement error. Journal of Applied Econometrics, 29(6), 880–900. https://doi.org/10.1002/jae.2359
Article
Google Scholar
Kannangara, C. S., Allen, R. E., Waugh, G., Nahar, N., Khan, S. Z. N., Rogerson, S., & Carson, J. (2018). All that glitters is not grit: Three studies of grit in university students. Frontiers in Psychology, 9, 1539. https://doi.org/10.3389/fpsyg.2018.01539
Article
PubMed
PubMed Central
Google Scholar
Kaufman, L., & Rousseeuw, P. J. (Eds.). (1990). Finding groups in data. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470316801
King, R. B., & Trinidad, J. E. (2021). Growth mindset predicts achievement only among rich students: Examining the interplay between mindset and socioeconomic status. Social Psychology of Education, 24, 635–652. https://doi.org/10.1007/s11218-021-09616-z
Article
Google Scholar
Kishiyama, M. M., Boyce, W. T., Jimenez, A. M., Perry, L. M., & Knight, R. T. (2009). Socioeconomic disparities affect prefrontal function in children. Journal of Cognitive Neuroscience, 21(6), 1106–1115. https://doi.org/10.1162/jocn.2009.21101
Article
PubMed
Google Scholar
Kruskal, J. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1), 1–27.
Article
Google Scholar
Ladd, G. W., & Price, J. M. (1987). Predicting Children’s social and school adjustment following the transition from preschool to kindergarten. Child Development, 58(5), 1168. https://doi.org/10.2307/1130613
Article
Google Scholar
Lipina, S. J. (2017). Critical considerations about the use of poverty measures in the study of cognitive development: childhood poverty and cognitive development. International Journal of Psychology, 52(3), 241–250. https://doi.org/10.1002/ijop.12282
Article
PubMed
Google Scholar
Lipina, S. J., Martelli, M. I., Vuelta, B., & Colombo, J. A. (2005). Performance on the A-not-B task of Argentinean infants from unsatisfied and satisfied basic needs homes. Interamerican Journal of Psycholog, 39(1), 49–60.
Google Scholar
Lipina, S. J., Segretin, S., Hermida, J., Prats, L., Fracchia, C., Camelo, J. L., & Colombo, J. A. (2013). Linking childhood poverty and cognition: Environmental mediators of non-verbal executive control in an argentine sample. Developmental Science, 16(5), 697–707. https://doi.org/10.1111/desc.12080
Article
PubMed
Google Scholar
Lipman, E. L., Offord, D. R., & Boyle, M. H. (1994). Relation between economic disadvantage and psychosocial morbidity in children. CMAJ: Canadian Medical Association Journal = Journal de l’Association Medicale Canadienne, 151(4), 431–437.
PubMed
Google Scholar
Lloyd, S. P. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28(2), 129–137.
Article
Google Scholar
Marcus Jenkins, J. V., Woolley, D. P., Hooper, S. R., & De Bellis, M. D. (2013). Direct and indirect effects of brain volume, socioeconomic status and family stress on child IQ. Journal of Child and Adolescent Behavior, 1(2). https://doi.org/10.4172/2375-4494.1000107
Masten, A. S., & Tellegen, A. (2012). Resilience in developmental psychopathology: Contributions of the project competence longitudinal study. Development and Psychopathology, 24(2), 345–361. https://doi.org/10.1017/S095457941200003X
Article
PubMed
Google Scholar
Mayer, S. E. (2002). The influence of parental income on children’s outcomes. Ministry of Social Development.
Mayes, S. D., & Calhoun, S. L. (2007). Learning, attention, writing, and processing speed in typical children and children with ADHD, autism, anxiety, depression, and oppositional-defiant disorder. Child Neuropsychology, 13(6), 469–493. https://doi.org/10.1080/09297040601112773
Article
PubMed
Google Scholar
McLeod, J. D., & Kaiser, K. (2004). Childhood emotional and behavioral problems and educational attainment. American Sociological Review, 69(5), 636–658. https://doi.org/10.1177/000312240406900502
Article
Google Scholar
McMillan, J. A., Land, M., & Leslie, L. K. (2017). Pediatric residency education and the behavioral and mental health crisis: A call to action. Pediatrics, 139(1), e20162141. https://doi.org/10.1542/peds.2016-2141
Article
PubMed
Google Scholar
Meltzer, H., Gatward, R., Goodman, R., & Ford, T. (2000). The mental health of children and adolescents in Great Britain. Office for National Statistics.
Mezzacappa, E. (2004). Alerting, orienting, and executive attention: Developmental properties and sociodemographic correlates in an epidemiological sample of young, urban children. Child Development, 75(5), 1373–1386. https://doi.org/10.1111/j.1467-8624.2004.00746.x
Article
PubMed
Google Scholar
Muris, P., Meesters, C., & Schouten, E. (2002). A brief questionnaire of DSM-IV-defined anxiety and depression symptoms among children. Clinical Psychology & Psychotherapy, 9(6), 430–442. https://doi.org/10.1002/cpp.347
Article
Google Scholar
Neville, H. J., Stevens, C., Pakulak, E., Bell, T. A., Fanning, J., Klein, S., & Isbell, E. (2013). Family-based training program improves brain function, cognition, and behavior in lower socioeconomic status preschoolers. Proceedings of the National Academy of Sciences, 110(29), 12138–12143. https://doi.org/10.1073/pnas.1304437110
Article
Google Scholar
Nieuwenhuis, J., Hooimeijer, P., & Meeus, W. (2015). Neighbourhood effects on educational attainment of adolescents, buffered by personality and educational commitment. Social Science Research, 50, 100–109. https://doi.org/10.1016/j.ssresearch.2014.11.011
Article
PubMed
Google Scholar
Noble, K. G., Farah, M. J., & McCandliss, B. D. (2006). Socioeconomic background modulates cognition–achievement relationships in reading. Cognitive Development, 21(3), 349–368. https://doi.org/10.1016/j.cogdev.2006.01.007
Article
PubMed
PubMed Central
Google Scholar
Noble, K. G., McCandliss, B. D., & Farah, M. J. (2007). Socioeconomic gradients predict individual differences in neurocognitive abilities. Developmental Science, 10(4), 464–480. https://doi.org/10.1111/j.1467-7687.2007.00600.x
Article
PubMed
Google Scholar
Noble, K. G., Norman, M. F., & Farah, M. J. (2005). Neurocognitive correlates of socioeconomic status in kindergarten children. Developmental Science, 8(1), 74–87. https://doi.org/10.1111/j.1467-7687.2005.00394.x
Article
PubMed
Google Scholar
Odic, D., & Starr, A. (2018). An introduction to the approximate number system. Child Development Perspectives, 12(4), 223–229. https://doi.org/10.1111/cdep.12288
Article
PubMed
PubMed Central
Google Scholar
Petrill, S. A., Pike, A., Price, T., & Plomin, R. (2004). Chaos in the home and socioeconomic status are associated with cognitive development in early childhood: Environmental mediators identified in a genetic design. Intelligence, 32(5), 445–460. https://doi.org/10.1016/j.intell.2004.06.010
Article
Google Scholar
Reiss, F. (2013). Socioeconomic inequalities and mental health problems in children and adolescents: A systematic review. Social Science & Medicine, 90, 24–31. https://doi.org/10.1016/j.socscimed.2013.04.026
Article
Google Scholar
Riglin, L., Frederickson, N., Shelton, K. H., & Rice, F. (2013). A longitudinal study of psychological functioning and academic attainment at the transition to secondary school. Journal of Adolescence, 36(3), 507–517. https://doi.org/10.1016/j.adolescence.2013.03.002
Article
PubMed
Google Scholar
Rousseeuw, P. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics, 20, 53–65. https://doi.org/10.1016/0377-0427(87)90125-7
Article
Google Scholar
Sampson, R. J., & Laub, J. H. (1994). Urban poverty and the family context of delinquency: A new look at structure and process in a classic study. Child Development, 65(2), 523–540.
Article
Google Scholar
Sarsour, K., Sheridan, M., Jutte, D., Nuru-Jeter, A., Hinshaw, S., & Boyce, W. T. (2011). Family socioeconomic status and child executive functions: The roles of language, home environment, and single parenthood. Journal of the International Neuropsychological Society, 17(01), 120–132. https://doi.org/10.1017/S1355617710001335
Article
PubMed
Google Scholar
Schmittmann, V. D., Cramer, A. O. J., Waldorp, L. J., Epskamp, S., Kievit, R. A., & Borsboom, D. (2013). Deconstructing the construct: A network perspective on psychological phenomena. New Ideas in Psychology, 31(1), 43–53. https://doi.org/10.1016/j.newideapsych.2011.02.007
Article
Google Scholar
Sheridan, M. A., Shi, F., Miller, A. B., Salhi, C., & McLaughlin, K. A. (2020). Network structure reveals clusters of associations between childhood adversities and development outcomes. Developmental Science, 23(5), e12934. https://doi.org/10.1111/desc.12934
Article
PubMed
PubMed Central
Google Scholar
Smith, J. R., & Brooks-Gunn, J. (1997). Correlates and consequences of harsh discipline for young children. Archives of Pediatrics and Adolescent Medicine, 151(8), 777–786.
Article
Google Scholar
Smith, J. R., Brooks-Gunn, J., & Klebanov, P. (1997). The consequences of living in poverty for young children’s cognitive and verbal ability and early school achievement. In G. J. Duncan & J. Brooks-Gunn (Eds.), Consequences of growing up poor (pp. 132–189). Russel Sage Foundation.
Smith, N., & Middleton, S. (2007). A review of poverty dynamics research in the UK. Joseph Rowntree Foundation.
Stevens, C., Lauinger, B., & Neville, H. (2009). Differences in the neural mechanisms of selective attention in children from different socioeconomic backgrounds: An event-related brain potential study. Developmental Science, 12(4), 634–646. https://doi.org/10.1111/j.1467-7687.2009.00807.x
Article
PubMed
PubMed Central
Google Scholar
Stumm, S., Smith-Woolley, E., Ayorech, Z., McMillan, A., Rimfeld, K., Dale, P. S., & Plomin, R. (2019). Predicting educational achievement from genomic measures and socioeconomic status. Developmental Science, 23, e12925. https://doi.org/10.1111/desc.12925
Article
Google Scholar
Thomas, A. J., & O’Brien, J. T. (2008). Depression and cognition in older adults. Current Opinion in Psychiatry, 21(1), 8–13. https://doi.org/10.1097/YCO.0b013e3282f2139b
Article
PubMed
Google Scholar
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodology), 58(1), 267–288.
Google Scholar
Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63(2), 411–423. https://doi.org/10.1111/1467-9868.00293
Article
Google Scholar
Tolentino, J. C., & Schmidt, S. L. (2018). DSM-5 criteria and depression severity: Implications for clinical practice. Frontiers in Psychiatry, 9, 450. https://doi.org/10.3389/fpsyt.2018.00450
Article
PubMed
PubMed Central
Google Scholar
Torsheim, T., Levin, K. A., Schnohr, C., Mazur, J., Niclasen, B., Currie, C., & the FAS Development Study Group. (2016). Psychometric validation of the revised family affluence scale: A latent variable approach. Child Indicators Research, 9(3), 771–784. https://doi.org/10.1007/s12187-015-9339-x
Article
PubMed
Google Scholar
Turkheimer, E., Haley, A., Waldron, M., D’Onofrio, B., & Gottesman, I. I. (2003). Socioeconomic status modifies heritability of IQ in young children. Psychological Science, 14(6), 623–628. https://doi.org/10.1046/j.0956-7976.2003.psci_1475.x
Article
PubMed
Google Scholar
Veldman, K., Bültmann, U., Stewart, R. E., Ormel, J., Verhulst, F. C., & Reijneveld, S. A. (2014). Mental health problems and educational attainment in adolescence: 9-year follow-up of the TRAILS study. PLoS One, 9(7), e101751. https://doi.org/10.1371/journal.pone.0101751
Article
PubMed
PubMed Central
Google Scholar
Weatherholt, T. N., Harris, R. C., Burns, B. M., & Clement, C. (2006). Analysis of attention and analogical reasoning in children of poverty. Journal of Applied Developmental Psychology, 27(2), 125–135. https://doi.org/10.1016/j.appdev.2005.12.010
Article
Google Scholar
Werner, E. E. (1989). High-risk children in young adulthood: A longitudinal study from birth to 32 years. American Journal of Orthopsychiatry, 59(1), 72–81. https://doi.org/10.1111/j.1939-0025.1989.tb01636.x
Article
Google Scholar
Werner, E. E. (1993). Risk, resilience, and recovery: Perspectives from the Kauai longitudinal study. Development and Psychopathology, 5(4), 503–515. https://doi.org/10.1017/S095457940000612X
Article
Google Scholar
Whitehurst, G. J. (1997). Language processes in context: Language learning in children reared in poverty. In L. B. Adamson & M. A. Romski (Eds.), Research on communication and language disorders: Contribution to theories of language development (pp. 233–266). Brookes.