Skip to main content
Log in

Influence of gas modifiers on the TIMS analysis of familiar explosives

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

In the present work, we studied the influence of the bath composition (e.g., organic modifiers) on the mobility resolving power, resolution, and lifetime of familiar explosives during trapped ion mobility spectrometry (TIMS). Experimental results showed the dependence of the mobility with the organic modifiers (mass and size) for the case of TIMS-MS. Different from trends observed in drift tube like IMS devices, no correlation between the mobility resolving power and resolution in TIMS was observed with the bath gas composition (e.g., air, air + methanol, air +2-propanol, and air + acetone). Time decay plots showed that common explosives with adduct complexes signal decrease over time as a function of the trapping time, without any significant improvement with the addition of the organic modifiers. Theoretical calculation of potential clustering and dissociation pathways supported the time decay findings since no major energetic differences between the pathways were observed as a function of the organic modifiers. Our findings suggest that beside the size of the collision partner, there are specific intermolecular dynamics that drive the trapping behavior of familiar explosives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schenk ER, Ridgeway ME, Park MA, Leng F, Fernandez-Lima FA (2014) Isomerization kinetics of AT hook Decapeptide solution structures. Anal Chem 86(2):1210–1214

    Article  CAS  Google Scholar 

  2. Schenk ER, Mendez V, Landrum JT, Ridgeway ME, Park MA, Fernandez-Lima FA (2014) Direct observation of differences of carotenoid polyene chain cis/trans isomers resulting from structural topology. Anal Chem 86(4):2019–2024

    Article  CAS  Google Scholar 

  3. Hernandez DR, DeBord JD, Ridgeway ME, Kaplan DA, Park MA, Fernandez-Lima FA (2014) Ion dynamics in a trapped ion mobility spectrometer. Analyst 139(8):1913–1921

    Article  CAS  Google Scholar 

  4. McKenzie A, DeBord JD, Ridgeway ME, Park MA, Eiceman GA, Fernandez-Lima F (2015) Lifetimes and stabilities of familiar explosives molecular adduct complexes during ion mobility measurements. Analyst 140(16):5692–5699

    Article  Google Scholar 

  5. B. Schneider, T. Covey, E. Nazarov, DMS-MS separations with different transport gas modifiers, 2013

  6. Kafle A, Coy SL, Wong BM, Fornace AJ Jr, Glick JJ, Vouros P (2014) Understanding gas phase modifier interactions in rapid analysis by differential mobility-tandem mass spectrometry. J Am Soc Mass Spectrom 25(7):1098–1113

    Article  CAS  Google Scholar 

  7. Levin DS, Vouros P, Miller RA, Nazarov EG, Morris JC (2006) Characterization of gas-phase molecular interactions on differential mobility ion behavior utilizing an electrospray ionization-differential mobility-mass spectrometer system. Anal Chem 78(1):96–106

    Article  CAS  Google Scholar 

  8. Porta T, Varesio E, Hopfgartner G (2013) Gas-phase separation of drugs and metabolites using modifier-assisted differential ion mobility spectrometry hyphenated to liquid extraction surface analysis and mass spectrometry. Anal Chem 85(24):11771–11779

    Article  CAS  Google Scholar 

  9. R. Fernández-Maestre, C. Wu, H.H. Hill, Buffer gas modifiers effect resolution in ion mobility spectrometry through selective ion-molecule clustering reactions, Rapid Commun Mass Spectrom : RCM, 26 (2012) 2211–2223, 19

    Article  Google Scholar 

  10. Waraksa E, Gaik U, Namieśnik J, Sillanpää M, Dymerski T, Wójtowicz M, Puton J (2016) Dopants and gas modifiers in ion mobility spectrometry, vol 82, pp 237–249

    Google Scholar 

  11. Butcher D, Miksovska J, Ridgeway ME, Park MA, Fernandez-Lima F The effects of solution additives and gas-phase modifiers on the molecular environment and conformational space of common heme proteins. Rapid Commun Mass Spectrom 0

  12. Garabedian A, Leng F, Ridgeway ME, Park MA, Fernandez-Lima F (2018) Tailoring peptide conformational space with organic gas modifiers in TIMS-MS. Int J Ion Mobil Spectrom 21(1-2):43–48

    Article  CAS  Google Scholar 

  13. Fernandez-Lima FA, Kaplan DA, Park MA (2011) Note: integration of trapped ion mobility spectrometry with mass spectrometry. Rev Sci Instrum 82(12):126106

    Article  CAS  Google Scholar 

  14. Fernandez-Lima FA, Kaplan DA, Suetering J, Park MA (2011) Gas-phase separation using a trapped ion mobility spectrometer. Int J Ion Mobil Spectrom 14(2-3):93–98

    Article  Google Scholar 

  15. E.W. McDaniel, E.A. Mason, Mobility and diffusion of ions in gases, John Wiley and Sons, Inc., New York, New York, 1973

  16. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J. Montgomery, J.A.T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, revision C.02, in: Gaussian, Inc., Wallingford CT, 2004

Download references

Acknowledgements

This work was supported by the National Science Foundation Division of Chemistry, under CAREER award CHE-1654274, with co-funding from the Division of Molecular and Cellular Biosciences to F.F.-L. The authors will also like to acknowledge the helpful discussions and technical support from Dr. Mark E. Ridgeway and Dr. Melvin A. Park from Bruker Daltonics Inc. during the development and installation of the custom-built TIMS-TOF MS instrument. We will also like to acknowledge Dr. Alexander Mebel support for the theoretical calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Fernandez-Lima.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 595 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McKenzie-Coe, A., Fernandez-Lima, F. Influence of gas modifiers on the TIMS analysis of familiar explosives. Int. J. Ion Mobil. Spec. 22, 71–76 (2019). https://doi.org/10.1007/s12127-019-00246-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-019-00246-y

Keywords

Navigation