Skip to main content
Log in

Current status and need for standards in ion mobility spectrometry

  • Review
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

Ion mobility spectrometry (IMS) is a well established technique for the detection of many compounds of interest based on the reduced mobility (K0) values of their ions. While having the advantage of small size, weight, and power, IMS has been subject to low specificity and is subject to interferences that can cause false alarms in detectors used for security applications. The rate of false positive alarms is directly related to the detection window width required to maintain a high rate of true positive detections. These window widths are in turn a result of the historically available accuracy of reference measurements and the range of responses by multiple detectors. The windows cannot be arbitrarily reduced without risking an increase in the rate of false negative responses. Ongoing work has focused on high accuracy calibration as a means of decreasing the false alarm rates by reducing the variability between detectors which would allow for narrower detection windows. Central to the calibration procedure is the selection of an appropriate calibrant (or reference standard) that can be easily characterized and known with a high degree of certainty across a range of instrumental conditions. This review evaluates a number of previously proposed and potential calibrants against seven recommended criteria of suitability. We examine the sources of false positive alarms in IMS-based detectors and propose a calibration procedure based on high accuracy reference measurements. Initial results of applying this procedure in a post-processing manner are promising towards reducing detector variability and detection window width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Eiceman GA, Karpas Z, Hill HH Jr (2014) Ion mobility spectrometry, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  2. Kaur-Atwal G, O'Connor G, Aksenov AA, Bocos-Bintintan V, Thomas CLP, Creaser CS (2009) Chemical standards for ion mobility spectrometry: a review. Int J Ion Mobil Spectrom 12:1–14

    Article  CAS  Google Scholar 

  3. Steinfeld JI, Wormhoudt J (1998) Explosives detection: a challenge for physical chemistry. Annu Rev Phys Chem 49:203–232

    Article  CAS  Google Scholar 

  4. Buxton TL, Harrington PD (2003) Trace explosives detection in aqueous samples by solid-phase extraction ion mobility spectrometry (SPE-IMS). Appl Spectrosc 57(2):223–232

    Article  CAS  Google Scholar 

  5. Matz LM, Tornatore PS, Hill HH Jr (2001) Evaluation of suspected interferents for TNT detection by ion mobility spectrometry. Talanta 54:171–179

    Article  CAS  Google Scholar 

  6. Mäkinen M, Sillanpää M, Viitanen A-K, Knap A, Mäkelä JM, Puton J (2011) The effect of humidity on sensitivity of amine detection in ion mobility spectrometry. Talanta 84:116–121

    Article  Google Scholar 

  7. Crawford CL, Hauck BC, Tufariello JA, Harden CS, McHugh V, Siems WF, Hill HH Jr (2012) Accurate and reproducible ion mobility measurements for chemical standard evaluation. Talanta 101:161–170

    Article  CAS  Google Scholar 

  8. Kanu AB, Haigh PE, Hill HH Jr (2005) Surface detection of chemical warfare agent simulants and degradation products. Anal Chim Acta 553:148–159

    Article  CAS  Google Scholar 

  9. Fernández-Maestre R, Harden CS, Ewing RG, Crawford CL, Hill HH Jr (2010) Chemical standards in ion mobility spectrometry. Analyst 135(6):1433–1442

    Article  Google Scholar 

  10. Eiceman GA, Nazarov EG, Stone JA (2003) Chemical standards in ion mobility spectrometry. Anal Chim Acta 493:185–194

    Article  CAS  Google Scholar 

  11. Ochoa ML, Harrington PB (2004) Detection of methamphetamine in the presence of nicotine using in situ chemical derivatization and ion mobility spectrometry. Anal Chem 76(4):985–991

    Article  CAS  Google Scholar 

  12. Rearden P, Harrington PB (2005) Rapid screening of precursor and degradation products of chemical warfare agents in soil by solid-phase microextraction ion mobility spectrometry (SPME-IMS). Anal Chim Acta 545(1):13–20

    Article  CAS  Google Scholar 

  13. Clemmer DE, Jarrold MF (1997) Ion mobility measurements and their applications to clusters and biomolecules. J Mass Spectrom 32:577–592

    Article  CAS  Google Scholar 

  14. Harris GA, Kwasnik M, Fernàndez FM (2011) Direct analysis in real time coupled to multiplexed drift tube ion mobility spectrometry for detecting toxic chemicals. Anal Chem 83(6):1908–1915

    Article  CAS  Google Scholar 

  15. Carrico JP, Sickenberger DW, Spangler GE, Vora KN (1983) Simple electrode design for ion mobility spectrometer. J Phys E Sci Instrum 16:1058–1062

    Article  CAS  Google Scholar 

  16. Eiceman GA, Wang Y, Garcia-Gonzalez L, Harden CS, Shoff DB (1995) Enhanced selectivity in ion mobility spectrometry analysis of complex mixtures by alternate reagent gas chemistry. Anal Chim Acta 306:21–33

    Article  CAS  Google Scholar 

  17. Gunzer F, Baether W, Zimmerman S (2011) Investigation of dimethyl methylphosphonate (DMM) with an ion mobility spectrometer using a pulsed electron source. Int J Ion Mobil Spectrom 14:99–107

    Article  CAS  Google Scholar 

  18. Cochems P, Gunzer F, Langejuergen J, Heptner A, Zimmerman S (2012) Selective ion suppression as a pre-separation method in ion mobility spectrometry using a pulsed electron gun. Int J Ion Mobil Spectrom 15:31–39

    Article  CAS  Google Scholar 

  19. Asbury GR, Klasmeier J, Hill HH Jr (2000) Analysis of explosives using electrospray ionization/ion mobility spectrometry (ESI/IMS). Talanta 50:1291–1298

    Article  CAS  Google Scholar 

  20. Tam M, Hill HH Jr (2004) Secondary electrospray ionization-ion mobility spectrometry for explosive vapor detection. Anal Chem 76(10):2741–2747

    Article  CAS  Google Scholar 

  21. Ewing RG, Atkinson DA, Eiceman GA, Ewing GJ (2001) A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 54:515–529

    Article  CAS  Google Scholar 

  22. Kanu AB, Hill HH Jr (2007) Identity confirmation of drugs and explosives in ion mobility spectrometry using a secondary drift gas. Talanta 73:692–699

    Article  CAS  Google Scholar 

  23. Daum KA, Atkinson DA, Ewing RG, Knighton WB, Grimsrud EP (2001) Resolving interferences in negative mode ion mobility spectrometry using selective reactant ion chemistry. Talanta 54:299–306

    Article  CAS  Google Scholar 

  24. Spangler GE, Carrico JP, Campbell DN (1985) Recent advances in ion mobility spectrometry for explosives vapor detection. J Test Eval 13(3):234–240

    Article  CAS  Google Scholar 

  25. Huang SD, Kolaitis L, Lubman DM (1987) Detection of explosives using laser desoprtion in ion mobility spectrometry/mass spectrometry. Appl Spectrosc 41:1371–1376

    Article  CAS  Google Scholar 

  26. Spangler GE, Lawless PA (1978) Ionization of nitrotoluene compounds in negative ion plasma chromatography. Anal Chem 50(7):884–892

    Article  CAS  Google Scholar 

  27. Fetterolf DD (1992) In: Yinon J (ed) Detection of trace explosive evidence by ion mobility spectrometry. 4th international symposium on analysis and detection of explosives, Jerusalem, Israel, pp 117–132

  28. Tabrizchi M, Abedi A (2002) A novel electron source for negative ion mobility spectrometry. Int J Mass Spectrom 218:75–85

    Article  CAS  Google Scholar 

  29. Khayamian T, Tabrizchi M, Jafari MT (2003) Analysis of 2,4,6-trinitrotoluene, pentaerythritol tetranitrate and cyclo-1,3,5-trimethylene-2,4,6-trinitramine using negative corona discharge ion mobility spectrometry. Talanta 59:327–333

    Article  CAS  Google Scholar 

  30. Hauck BC, Siems WF, Harden CS, McHugh VM, Hill HH Jr (2016) E/N effects on K 0 values revealed by high precision measurements under low field conditions. Rev Sci Instrum 87:075104

    Article  Google Scholar 

  31. Hauck BC, Siems WF, Harden CS, McHugh VM, Hill HH Jr (2017) Construction and evaluation of a hermetically sealed accurate ion mobility instrument. Int J Ion Mobil Spectrom 20(3–4):57–66

    Article  CAS  Google Scholar 

  32. Lai H, Leung A, Magee M, Almirall JR (2010) Identification of volatile chemical signatures from plastic explosives by SPME-GC/MS and detection by ion mobility spectrometry. Anal Bioanal Chem 396:2997–3007

    Article  CAS  Google Scholar 

  33. Hauck BC, Siems WF, Harden CS, McHugh VM, Hill HH Jr (2018) High accuracy ion mobility spectrometry for instrument calibration. Anal Chem 90(7):4578–4584

    Article  CAS  Google Scholar 

  34. Hauck BC, Davis EJ, Clark AE, Siems WF, Harden CS, McHugh VM, Hill HH Jr (2014) Determining the water content of a drift gas using reduced ion mobility measurements. Int J Mass Spectrom 368:37–44

    Article  CAS  Google Scholar 

  35. Hauck BC (2016) High accuracy ion mobility spectrometry to reduce false alarm rates in national security technology. Ph.D. Thesis, Washington State University

  36. Lokhnauth JK, Snow NH (2005) Determination of parabens in pharmaceutical formulations by solid-phase microextraction-ion mobility spectrometry. Anal Chem 77(18):5938–5946

    Article  CAS  Google Scholar 

  37. Hunter EPL, Lias SG (1998) Evaluated gas phase basicities and proton affinities of molecules: an update. J Phys Chem Ref Data 27(3):413–656

    Article  CAS  Google Scholar 

  38. Yeo ANH, Williams DH (1970) Calculation of partial mass spectra of some organic compounds undergoing competing reactions from the molecular ions. J Am Chem Soc 92(13):3984–3990

    Article  CAS  Google Scholar 

  39. Nazarov EG, Coy SL, Krylov EV, Miller RA, Eiceman GA (2006) Pressure effects in differential mobility spectrometry. Anal Chem 78(22):7697–7706

    Article  CAS  Google Scholar 

  40. Hill CA, Thomas CLP (2005) Programmable gate delayed ion mobility spectrometry-mass spectrometry: a study with low concentrations of dipropylene-glycol-monomethyl-ether in air. Analyst 130:1155–1161

    Article  CAS  Google Scholar 

  41. Hodges RV, McDonnell TJ, Beauchamp JL (1980) Properties and reactions of trimethyl phosphite, trimethyl phosphate, triethyl phosphate, and trimethyl phosphorothionate by ion cyclotron resonance spectroscopy. J Am Chem Soc 102(4):1327–1332

    Article  CAS  Google Scholar 

  42. Snyder AP, Harden CS, Brittain AH, Kim M-G, Arnold NS, Meuzelaar HLC (1993) Portable hand-held gas chromatography/ion mobility spectrometry device. Anal Chem 65(3):299–306

    Article  CAS  Google Scholar 

  43. Jurasek L, Argyropoulos DS (2006) On the reactivity of lignin models with oxygen centered radical. I. Computations of proton and electron affinities and O-H bond dissociation energies. Cellul Chem Technol 40(3–4):165–172

    CAS  Google Scholar 

  44. Denawaka CJ, Fowlis IA, Dean JR (2014) Evaluation and application of static headspace–multicapillary column-gas chromatography–ion mobility spectrometry for complex sample analysis. J Chromatogr A 1338:136–148

    Article  CAS  Google Scholar 

  45. Poziomek EJ, Eiceman GA (1992) Solid-phase enrichment, thermal desorption, and ion mobility spectrometry for field screening of organic pollutants in water. Environ Sci Technol 26:1313–1318

    Article  CAS  Google Scholar 

  46. Joshi M, Rigsby K, Almirall JR (2010) Analysis of the headspace composition of smokeless powders using GC–MS, GC-μECD and ion mobility spectrometry. Forensic Sci Int 208:29–36

    Article  Google Scholar 

  47. Lai H, Corbin I, Almirall JR (2008) Headspace sampling and detection of cocaine, MDMA, and marijuana via volatile markers in the presence of potential interferences by solid phase microextraction–ion mobility spectrometry (SPME-IMS). Anal Bioanal Chem 392:105–113

    Article  CAS  Google Scholar 

  48. Lai H, Guerra P, Joshi M, Almirall JR (2008) Analysis of volatile components of drugs and explosives by solid phase microextraction-ion mobility spectrometry. J Sep Sci 31:402–412

    Article  CAS  Google Scholar 

  49. Eiceman GA, Shoff DB, Harden CS, Snyder AP, Fleischer ME, Martinez PM, Watkins ML (1989) Ion mobility spectrometry of halothane, enflurane, and isoflurane anesthetics in air and respired gases. Anal Chem 61(10):1093–1099

    Article  CAS  Google Scholar 

  50. Saito K, Takayasu T, Nishigami J, Kondo T, Ohtsuji M, Lin Z, Ohshima T (1995) Determination of the volatile anesthetics halothane, enflurane, isoflurane, and sevoflurane in biological specimens by pulse-heating GC-MS. J Anal Toxicol 19:115–119

    Article  CAS  Google Scholar 

  51. Matias C, Mauracher A, Huber SE, Denifl S, Limão-Vieira P, Scheier P, Märk TD, González-Méndez R, Mayhew CA (2015) Dissociative electron attachment to the volatile anaesthetic enflurane and isoflurane and the chlorinated ethanes pentachloroethane and hexachloroethane. Int J Mass Spectrom 379:179–186

    Article  CAS  Google Scholar 

  52. Vautz W, Bodeker B, Baumbach JI, Bader S, Westhoff M, Perl T (2009) An implementable approach to obtain reproducible reduced ion mobility. Int J Ion Mobil Spectrom 12:47–57

    Article  CAS  Google Scholar 

  53. Ruzsanyi V, Sielemann S, Baumbach JI (2002) Determination of VOCs in human breath using IMS. Int J Ion Mobil Spectrom 5(3):45–48

    CAS  Google Scholar 

  54. Hokell SH, Yang SS, Cooks RG, Hrovat DA, Borden WT (1994) Proton affinities of free radicals measured by the kinetic method. J Am Chem Soc 116(11):4888–4892

    Article  Google Scholar 

  55. Sulzer P, Rondino F, Ptasinskaa S, Illenberger E, Mark TD, Scheier P (2008) Probing trinitrotoluene (TNT) by low-energy electrons: strong fragmentation following attachment of electrons near 0 eV. Int J Mass Spectrom 272:149–153

    Article  CAS  Google Scholar 

  56. Kebarle P, Searles SK, Zolla A, Scarborough J, Arshadi M (1967) The solvation of the hydrogen ion by water molecules in the gas phase. Heats and enthalpies of solvation of individual reactions: H+(H2O)n-1 + H2O → H+(H2O)n. J Am Chem Soc 89(25):6393–6399

    Article  CAS  Google Scholar 

  57. Wexler A (1976) Vapor pressure formulation for water in range 0 to 100 °C. A revision. J Res Natl Bur Stand 80A(5):775–785

    Article  CAS  Google Scholar 

  58. Puton J, Nousiainen M, Sillanpää M (2008) Ion mobility spectrometers with doped gases. Talanta 76:978–987

    Article  CAS  Google Scholar 

  59. Karpas Z (1989) Ion mobility spectrometry of aliphatic and aromatic amines. Anal Chem 61(7):684–689

    Article  CAS  Google Scholar 

  60. Ewing RG, Eiceman GA, Harden CS, Stone JA (2006) The kinetics of the decompositions of the proton bound dimers of 1,4-dimethylpyridine and dimethyl methylphosphonate from atmospheric pressure ion mobility spectra. Int J Mass Spectrom 255-256:76–85

    Article  CAS  Google Scholar 

  61. Armenta S, Blanco M (2012) Ion mobility spectrometry for monitoring diamine oxidase activity. Analyst 137:5891–5897

    Article  CAS  Google Scholar 

  62. Tabrizchi M, Shooshtari S (2003) Proton affinity measurements using ion mobility spectrometry. J Chem Thermodyn 35:863–870

    Article  CAS  Google Scholar 

  63. Butrow AB, Buchanan JH, Tevault DE (2009) Vapor pressure of organophosphorus nerve agent simulant compounds. J Chem Eng Data 54:1876–1883

    Article  CAS  Google Scholar 

  64. Hopkins HP Jr, Jahagirdar DV, Moulik PS, Aue DH, Webb HM, Davidson WR, Pedley MD (1984) Basicities of the 2-, 4-, 2,4-di-, and 2,6-disubstituted tert-butylpyridines in the gas phase and aqueous phase: steric effects in the solvation of tert-butyl-substituted pyridines and pyridinium cations. J Am Chem Soc 106(16):4341–4348

    Article  CAS  Google Scholar 

  65. Arnett EM, Chawla B (1979) Complete thermodynamic analysis of the hydration of thirteen pyridines and pyridinium ions. The special case of 2,6-di-tert-butylpyridine. J Am Chem Soc 101(24):7141–7146

    Article  CAS  Google Scholar 

  66. Sinues PM, Criado E, Vidal G (2012) Mechanistic study on the ionization of trace gases by an electrospray plume. Int J Mass Spectrom 313:21–29

    Article  Google Scholar 

  67. Brown P (1970) Kinetic studies in mass spectrometry. IX. Competing [M-NO2] and [M-NO] reactions in substituted nitrobenzenes. Approximate activation energies from ionization and appearance potentials. Org Mass Spectrom 4:533–544

    Article  CAS  Google Scholar 

  68. West C, Baron G, Minet J-J (2007) Detection of gunpowder stabilizers with ion mobility spectrometry. Forensic Sci Int 166:91–101

    Article  CAS  Google Scholar 

  69. Gaines AF, Kay J, Page FM (1965) Determination of Electron affinities part 8. Carbon tetrachloride, chloroform and Hexachloroethane. Trans Faraday Soc 62:874–880

    Article  Google Scholar 

  70. Peláez RJ, Blondel C, Delsart C, Drag C (2009) Pulsed photodetachment microscopy and the electron affinity of iodine. J Phys B Atomic Mol Phys 42:125001

    Article  Google Scholar 

  71. Guo X, Bruins AP, Covey TR (2006) Characterization of typical chemical background interferences in atmospheric pressure ionization liquid chromatography-mass spectrometry. Rapid Commun Mass Spectrom 20:3145–3150

    Article  CAS  Google Scholar 

  72. Romão W, Vaz BG, Lalli PM, Bueno IMS, Correa DN, Telles VLCN, de Castro EVR, Eberlin MN (2012) Analyzing Brazilian vehicle documents for authenticity by easy ambient sonic-spray ionization mass spectrometry. J Forensic Sci 57(2):539–543

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Dr. Augustus W. Fountain, Raphael P. Moon (ECBC), and Jasmine Wilding (JPM NBC CA) for their assistance in acquiring funding for this study. The work described was authorized under the Army Technology Objective, “Detection of Unknown Bulk Explosives,” under program 63004/L97, task 04 and the Joint Project Manager for Nuclear, Biological, and Chemical Contamination Avoidance (JPM NBC CA; Aberdeen Proving Ground, MD) MIPR numbers 10864246 and 4550199830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian C. Hauck.

Additional information

Disclaimer

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorizing documents

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hauck, B.C., Harden, C.S. & McHugh, V.M. Current status and need for standards in ion mobility spectrometry. Int. J. Ion Mobil. Spec. 21, 105–123 (2018). https://doi.org/10.1007/s12127-018-0239-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-018-0239-x

Keywords

Navigation