Skip to main content

Ion Mobility-Mass Spectrometry in Food and Environmental Chemistry

  • Chapter
  • First Online:
Mass Spectrometry in Food and Environmental Chemistry

Part of the book series: The Handbook of Environmental Chemistry ((HEC,volume 119))

  • 579 Accesses

Abstract

Ion mobility-mass spectrometry (IM-MS) has emerged as a powerful analytical technique currently used in numerous fields including food and environmental chemistry. IM-MS can be employed with several ionization methods and coupled with chromatographic separations to provide multidimensional identification of compounds based on the combination of retention time, collision cross section (CCS), and accurate mass. Experimentally obtained CCS values can be used to populate application-specific libraries that further allow identification and quantification in complex mixtures. This chapter will highlight recent advances in IM-MS methods and technology applied to the food chemistry and environmental chemistry fields. First, instances of IM-MS in nutritional analysis, food safety, food fingerprinting, and process control and quality assurance/quality control (QA/QC) will be discussed. Environmental applications including analysis of per- and polyfluoroalkyl substances (PFASs); polycyclic aromatic hydrocarbons (PAHs), benzene/toluene/xylene (BTX), and volatile organic compounds (VOCs); pesticides; and pharmaceutical and personal care products (PPCPs) will also be outlined. Overall, it is expected that IM-MS will continue to grow due to additional information offered in comparison with conventional methods and because of increased commercialization and improved resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eiceman GA, Karpas Z (2005) Ion mobility spectrometry. CRC Press, Boca Raton

    Book  Google Scholar 

  2. Gabelica V, Marklund E (2018) Fundamentals of ion mobility spectrometry. Curr Opin Chem Biol 42:51–59. https://doi.org/10.1016/j.cbpa.2017.10.022

    Article  CAS  Google Scholar 

  3. Kliman M, May JC, McLean JA (2011) Lipid analysis and lipidomics by structurally selective ion mobility-mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids 1811:935–945. https://doi.org/10.1016/j.bbalip.2011.05.016

    Article  CAS  Google Scholar 

  4. Shvartsburg AA, Smith RD (2008) Fundamentals of traveling wave ion mobility spectrometry. Anal Chem 80:9689–9699. https://doi.org/10.1021/ac8016295

    Article  CAS  Google Scholar 

  5. Shvartsvurg AA (2008) Differential ion mobility spectrometry: nonlinear transport and fundamentals of FAIMS. CRC Press, Boca Raton

    Book  Google Scholar 

  6. Winklmayr W, Reischl G, Lindner AO, Berner A (1991) A new electromobility spectrometer for the measurement of aerosol size distributions in the size range from 1 to 1000 nm. J Aerosol Sci 22:289–296

    Article  CAS  Google Scholar 

  7. Ridgeway ME, Lubeck M, Jordens J, Mann M, Park MA (2018) Trapped ion mobility spectrometry: a short review. Int J Mass Spectrom 425:22–35. https://doi.org/10.1016/j.ijms.2018.01.006

    Article  CAS  Google Scholar 

  8. Creaser CS, Griffiths JR, Bramwell CJ, Noreen S, Hill CA, Thomas CLP (2004) Ion mobility spectrometry: a review. Part 1. Structural analysis by mobility measurement. Analyst 129:984–994

    Article  CAS  Google Scholar 

  9. Zhou Z, Tu J, Zhu ZJ (2018) Advancing the large-scale CCS database for metabolomics and lipidomics at the machine-learning era. Curr Opin Chem Biol 42:34–41. https://doi.org/10.1016/j.cbpa.2017.10.033

    Article  CAS  Google Scholar 

  10. Zhou Z, Xiong X, Zhu ZJ (2017) MetCCS predictor: a web server for predicting collision cross-section values of metabolites in ion mobility-mass spectrometry based metabolomics. Bioinformatics 33:2235–2237

    Article  CAS  Google Scholar 

  11. Eiceman GA, Stone JA (2004) Ion mobility spectrometers in national defense. Anal Chem 76:390–397

    Article  Google Scholar 

  12. Allison TM (2019) Ion mobility in structural biology. In: Comprehensive analytical chemistry. Elsevier, pp 161–195

    Google Scholar 

  13. Chouinard CD, Nagy G, Smith RD, Baker ES (2019) Ion mobility-mass spectrometry in metabolomic, lipidomic, and proteomic analyses. Compr Anal Chem 83:123–159. https://doi.org/10.1016/bs.coac.2018.11.001

    Article  CAS  Google Scholar 

  14. Chouinard CD, Wei MS, Beekman CR, Kemperman RHJ, Yost RA (2016) Ion mobility in clinical analysis: current progress and future perspectives. Clin Chem 62:124–133. https://doi.org/10.1373/clinchem.2015.238840

    Article  CAS  Google Scholar 

  15. Webb IK, Garimella SVB, Tolmachev AV, Chen TC, Zhang X, Norheim RV, Prost SA, LaMarche B, Anderson GA, Ibrahim YM, Smith RD (2014) Experimental evaluation and optimization of structures for lossless ion manipulations for ion mobility spectrometry with time-of-flight mass spectrometry. Anal Chem 86:9169–9176. https://doi.org/10.1021/ac502055e

    Article  CAS  Google Scholar 

  16. Giles K, Ujma J, Wildgoose J, Pringle S, Richardson K, Langridge D, Green M (2019) A cyclic ion mobility-mass spectrometry system. Anal Chem 91:8564–8573. https://doi.org/10.1021/acs.analchem.9b01838

    Article  CAS  Google Scholar 

  17. Yin J, Wu M, Lin R, Li X, Ding H, Han L, Yang W, Song X, Li W, Qu H, Yu H, Li Z (2021) Application and development trends of gas chromatography–ion mobility spectrometry for traditional Chinese medicine, clinical, food and environmental analysis. Microchem J 168:106527. https://doi.org/10.1016/j.microc.2021.106527

    Article  CAS  Google Scholar 

  18. Food safety and inspection service: USDA Chemistry Laboratory guidebook. https://www.fsis.usda.gov/news-events/publications/chemistry-laboratory-guidebook

  19. Willems JL, Khamis MM, Mohammed Saeid W, Purves RW, Katselis G, Low NH, El-Aneed A (2016) Analysis of a series of chlorogenic acid isomers using differential ion mobility and tandem mass spectrometry. Anal Chim Acta 933:164–174. https://doi.org/10.1016/j.aca.2016.05.041

    Article  CAS  Google Scholar 

  20. McCullagh M, Douce D, Van Hoeck E, Goscinny S (2018) Exploring the complexity of steviol glycosides analysis using ion mobility mass spectrometry. Anal Chem 90:4585–4595. https://doi.org/10.1021/acs.analchem.7b05002

    Article  CAS  Google Scholar 

  21. Chen C, Yang X, Liu S, Zhang M, Wang C, Xia X, Lou Y, Xu H (2021) The effect of lipid metabolism regulator anthocyanins from Aronia melanocarpa on 3T3-L1 preadipocytes and C57BL/6 mice via activating AMPK signaling and gut microbiota, vol 12. Food Funct, pp 6254–6270

    Google Scholar 

  22. Liu W, Zhang X, Siems WF, Hill HH, Yin D (2015) Rapid profiling and identification of anthocyanins in fruits with Hadamard transform ion mobility mass spectrometry. Food Chem 177:225–232. https://doi.org/10.1016/j.foodchem.2015.01.034

    Article  CAS  Google Scholar 

  23. Potter CM, Jones GR, Barnes S, Jones DL (2021) Quantitative and qualitative analysis of edible oils using HRAM MS with an atmospheric pressure chemical ionisation (APCI) source. J Food Compos Anal 96:103760. https://doi.org/10.1016/j.jfca.2020.103760

    Article  CAS  Google Scholar 

  24. Canellas E, Vera P, Nerín C, Dreolin N, Goshawk J (2020) Ion mobility quadrupole time-of-flight high resolution mass spectrometry coupled to ultra-high pressure liquid chromatography for identification of non-intentionally added substances migrating from food cans. J Chromatogr A 1616:460778. https://doi.org/10.1016/j.chroma.2019.460778

    Article  CAS  Google Scholar 

  25. Liedtke S, Seifert L, Ahlmann N, Hariharan C, Franzke J, Vautz W (2018) Coupling laser desorption with gas chromatography and ion mobility spectrometry for improved olive oil characterisation. Food Chem 255:323–331. https://doi.org/10.1016/j.foodchem.2018.01.193

    Article  CAS  Google Scholar 

  26. Medina S, Pereira JA, Silva P, Perestrelo R, Câmara JS (2019) Food fingerprints – a valuable tool to monitor food authenticity and safety. Food Chem 278:144–162. https://doi.org/10.1016/j.foodchem.2018.11.046

    Article  CAS  Google Scholar 

  27. Alikord M, Mohammadi A, Kamankesh M, Shariatifar N (2021) Food safety and quality assessment: comprehensive review and recent trends in the applications of ion mobility spectrometry (IMS). Crit Rev Food Sci Nutr 0:1–34. https://doi.org/10.1080/10408398.2021.1879003

    Article  Google Scholar 

  28. García-Nicolás M, Arroyo-Manzanares N, Arce L, Hernández-Córdoba M, Viñas P (2020) Headspace gas chromatography coupled to mass spectrometry and ion mobility spectrometry: classification of virgin olive oils as a study case. Foods 9. https://doi.org/10.3390/foods9091288

  29. Gerhardt N, Birkenmeier M, Sanders D, Rohn S, Weller P (2017) Resolution-optimized headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) for non-targeted olive oil profiling. Anal Bioanal Chem 409:3933–3942. https://doi.org/10.1007/s00216-017-0338-2

    Article  CAS  Google Scholar 

  30. Arroyo-Manzanares N, Martín-Gómez A, Jurado-Campos N, Garrido-Delgado R, Arce C, Arce L (2018) Target vs spectral fingerprint data analysis of Iberian ham samples for avoiding labelling fraud using headspace – gas chromatography–ion mobility spectrometry. Food Chem 246:65–73. https://doi.org/10.1016/j.foodchem.2017.11.008

    Article  CAS  Google Scholar 

  31. Arroyo-Manzanares N, García-Nicolás M, Castell A, Campillo N, Viñas P, López-García I, Hernández-Córdoba M (2019) Untargeted headspace gas chromatography – ion mobility spectrometry analysis for detection of adulterated honey. Talanta 205:120123. https://doi.org/10.1016/j.talanta.2019.120123

    Article  CAS  Google Scholar 

  32. Yan S, Song M, Wang K, Fang X, Peng W, Wu L, Xue X (2021) Detection of acacia honey adulteration with high fructose corn syrup through determination of targeted α-Dicarbonyl compound using ion mobility-mass spectrometry coupled with UHPLC-MS/MS. Food Chem 352:129312. https://doi.org/10.1016/j.foodchem.2021.129312

    Article  CAS  Google Scholar 

  33. Causon TJ, Ivanova-Petropulos V, Petrusheva D, Bogeva E, Hann S (2019) Fingerprinting of traditionally produced red wines using liquid chromatography combined with drift tube ion mobility-mass spectrometry. Anal Chim Acta 1052:179–189. https://doi.org/10.1016/j.aca.2018.11.040

    Article  CAS  Google Scholar 

  34. Vautz W, Baumbach JI, Jung J (2004) Continuous monitoring of the fermentation of beer by ion mobility spectrometry. Int J Ion Mobil Spectrom 7:3–5

    CAS  Google Scholar 

  35. Cavanna D, Zanardi S, Dall’Asta C, Suman M (2019) Ion mobility spectrometry coupled to gas chromatography: a rapid tool to assess eggs freshness. Food Chem 271:691–696. https://doi.org/10.1016/j.foodchem.2018.07.204

    Article  CAS  Google Scholar 

  36. Ahmed E, Mohibul Kabir KM, Wang H, Xiao D, Fletcher J, Donald WA (2019) Rapid separation of isomeric perfluoroalkyl substances by high-resolution differential ion mobility mass spectrometry. Anal Chim Acta 1058:127–135. https://doi.org/10.1016/j.aca.2019.01.038

    Article  CAS  Google Scholar 

  37. Dodds JN, Hopkins ZR, Knappe DRU, Baker ES (2020) Rapid characterization of per- and polyfluoroalkyl substances (PFAS) by ion mobility spectrometry-mass spectrometry (IMS-MS). Anal Chem 92:4427–4435. https://doi.org/10.1021/acs.analchem.9b05364

    Article  CAS  Google Scholar 

  38. Luo YS, Aly NA, McCord J, Strynar MJ, Chiu WA, Dodds JN, Baker ES, Rusyn I (2020) Rapid characterization of emerging per- and polyfluoroalkyl substances in aqueous film-forming foams using ion mobility spectrometry-mass spectrometry. Environ Sci Technol 54:15024–15034. https://doi.org/10.1021/acs.est.0c04798

    Article  CAS  Google Scholar 

  39. Yukioka S, Tanaka S, Suzuki Y, Fujii S, Echigo S (2020) A new method to search for per- and polyfluoroalkyl substances (PFASs) by linking fragmentation flags with their molecular ions by drift time using ion mobility spectrometry. Chemosphere 239:124644. https://doi.org/10.1016/j.chemosphere.2019.124644

    Article  CAS  Google Scholar 

  40. Yukioka S, Tanaka S, Suzuki Y, Echigo S, Fujii S (2021) Data-independent acquisition with ion mobility mass spectrometry for suspect screening of per- and polyfluoroalkyl substances in environmental water samples. J Chromatogr A 1638:461899. https://doi.org/10.1016/j.chroma.2021.461899

    Article  CAS  Google Scholar 

  41. Adams KJ, Smith NF, Ramirez CE, Fernandez-Lima F (2018) Discovery and targeted monitoring of polychlorinated biphenyl metabolites in blood plasma using LC-TIMS-TOF MS. Int J Mass Spectrom 427:133–140. https://doi.org/10.1016/j.ijms.2017.11.009

    Article  CAS  Google Scholar 

  42. Zheng X, Dupuis KT, Aly NA, Zhou Y, Smith FB, Tang K, Smith RD, Baker ES (2018) Utilizing ion mobility spectrometry and mass spectrometry for the analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers and their metabolites. Anal Chim Acta 1037:265–273. https://doi.org/10.1016/j.aca.2018.02.054

    Article  CAS  Google Scholar 

  43. Zheng X, Aly NA, Zhou Y, Dupuis KT, Bilbao A, Paurus VL, Orton DJ, Wilson R, Payne SH, Smith RD, Baker ES (2017) A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem Sci 8:7724–7736. https://doi.org/10.1039/c7sc03464d

    Article  CAS  Google Scholar 

  44. Olanrewaju CA, Ramirez CE, Fernandez-Lima F (2021) Comprehensive screening of polycyclic aromatic hydrocarbons and similar compounds using GC–APLI–TIMS–TOFMS/GC–EI–MS. Anal Chem 93(15):6080–6087. https://doi.org/10.1021/acs.analchem.0c04525

    Article  CAS  Google Scholar 

  45. Sabo M, Matejčík Š (2012) Corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry for monitoring of volatile organic compounds. Anal Chem 84:5327–5334. https://doi.org/10.1021/ac300722s

    Article  CAS  Google Scholar 

  46. Heptner A, Reinecke T, Langejuergen J, Zimmermann S (2014) A gated atmospheric pressure drift tube ion mobility spectrometer-time-of-flight mass spectrometer. J Chromatogr A 1356:241–248. https://doi.org/10.1016/j.chroma.2014.06.059

    Article  CAS  Google Scholar 

  47. Allers M, Timoumi L, Kirk AT, Schlottmann F, Zimmermann S (2018) Coupling of a high-resolution ambient pressure drift tube ion mobility spectrometer to a commercial time-of-flight mass spectrometer. J Am Soc Mass Spectrom 29:2208–2217. https://doi.org/10.1007/s13361-018-2045-4

    Article  CAS  Google Scholar 

  48. Regueiro J, Negreira N, Berntssen MHG (2016) Ion-mobility-derived collision cross section as an additional identification point for multiresidue screening of pesticides in fish feed. Anal Chem 88:11169–11177. https://doi.org/10.1021/acs.analchem.6b03381

    Article  CAS  Google Scholar 

  49. Regueiro J, Negreira N, Hannisdal R, Berntssen MHG (2017) Targeted approach for qualitative screening of pesticides in salmon feed by liquid chromatography coupled to traveling-wave ion mobility/quadrupole time-of-flight mass spectrometry. Food Control 78:116–125. https://doi.org/10.1016/j.foodcont.2017.02.053

    Article  CAS  Google Scholar 

  50. Bauer A, Kuballa J, Rohn S, Jantzen E, Luetjohann J (2018) Evaluation and validation of an ion mobility quadrupole time-of-flight mass spectrometry pesticide screening approach. J Sep Sci 41:2178–2187. https://doi.org/10.1002/jssc.201701059

    Article  CAS  Google Scholar 

  51. Bauer A, Luetjohann J, Hanschen FS, Schreiner M, Kuballa J, Jantzen E, Rohn S (2018) Identification and characterization of pesticide metabolites in Brassica species by liquid chromatography travelling wave ion mobility quadrupole time-of-flight mass spectrometry (UPLC-TWIMS-QTOF-MS). Food Chem 244:292–303. https://doi.org/10.1016/j.foodchem.2017.09.131

    Article  CAS  Google Scholar 

  52. Goscinny S, McCullagh M, Far J, De Pauw E, Eppe G (2019) Towards the use of ion mobility mass spectrometry derived collision cross section as a screening approach for unambiguous identification of targeted pesticides in food. Rapid Commun Mass Spectrom 33:34–48. https://doi.org/10.1002/rcm.8395

    Article  CAS  Google Scholar 

  53. Chen X-P, Zhang F, Guo Y-L (2019) Validating an ion mobility spectrometry-quadrupole time of flight mass spectrometry method for high-throughput pesticide screening. Analyst 144:4835–4840

    Article  CAS  Google Scholar 

  54. Mlynek F, Himmelsbach M, Buchberger W, Klampfl CW (2020) A new analytical workflow using HPLC with drift-tube ion-mobility quadrupole time-of-flight/mass spectrometry for the detection of drug-related metabolites in plants. Anal Bioanal Chem 412:1817–1824. https://doi.org/10.1007/s00216-020-02429-7

    Article  CAS  Google Scholar 

  55. Mlynek F, Himmelsbach M, Buchberger W, Klampfl CW (2021) A fast-screening approach for the tentative identification of drug-related metabolites from three non-steroidal anti-inflammatory drugs in hydroponically grown edible plants by HPLC-drift-tube-ion-mobility quadrupole time-of-flight mass spectrometry. Electrophoresis 42:482–489. https://doi.org/10.1002/elps.202000292

    Article  CAS  Google Scholar 

  56. Seyer A, Mlynek F, Himmelsbach M, Buchberger W, Klampfl CW (2020) Investigations on the uptake and transformation of sunscreen ingredients in duckweed (Lemna gibba) and Cyperus alternifolius using high-performance liquid chromatography drift-tube ion-mobility quadrupole time-of-flight mass spectrometry. J Chromatogr A 1613:460673. https://doi.org/10.1016/j.chroma.2019.460673

    Article  CAS  Google Scholar 

  57. Lang T, Himmelsbach M, Mlynek F, Buchberger W, Klampfl CW (2021) Uptake and bio-transformation of telmisartan by cress (Lepidium sativum) from sewage treatment plant effluents using high-performance liquid chromatography/drift-tube ion-mobility quadrupole time-of-flight mass spectrometry. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-021-14289-4

  58. Emhofer L, Himmelsbach M, Buchberger W, Klampfl CW (2019) High-performance liquid chromatography drift-tube ion-mobility quadrupole time-of-flight/mass spectrometry for the identity confirmation and characterization of metabolites from three statins (lipid-lowering drugs) in the model plant cress (Lepidium sativum) after uptake from water. J Chromatogr A 1592:122–132. https://doi.org/10.1016/j.chroma.2019.01.049

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher D. Chouinard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Neal, S.P., Chouinard, C.D. (2022). Ion Mobility-Mass Spectrometry in Food and Environmental Chemistry. In: Picó, Y., Campo, J. (eds) Mass Spectrometry in Food and Environmental Chemistry. The Handbook of Environmental Chemistry, vol 119. Springer, Cham. https://doi.org/10.1007/698_2022_886

Download citation

Publish with us

Policies and ethics