Skip to main content
Log in

Numerical simulation of Monte Carlo ion transport at atmospheric pressure within improved air amplifier geometry

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

A computational fluid dynamics (CFD) software package ANSYS Fluent was employed for simulation of ion transport at atmospheric pressure between a nano-electrospray ionization (nano-ESI) emitter and the mass spectrometer (MS) sampling inlet tube inside an improved air amplifier device incorporating a radiofrequency ion funnel. The flow field, electric field and the ion trajectory calculations were carried out in separate steps. Parallelized user-defined functions were written to accommodate the additional static and transient electric fields and the elastic ion-gas collisions with the Monte Carlo hard-sphere simulation abilities within Fluent’s environment. The ion transmission efficiency from a nano-ESI emitter to the MS sampling inlet was evaluated for different air amplifier and ion funnel operating conditions by tracking 250 sample reserpine ions. Results show that the high velocity gas stream and the external electric field cause a rapid acceleration of the ion beam and its dispersion along the centreline of the air amplifier which leads to reduction of the space-charge effect and the beam divergence. The radiofrequency potential applied to the ion funnel contributed to additional ion focusing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahadi E, Konermann L (2010) Surface charge of electrosprayed water nanodroplets: a molecular dynamics study. J Am Chem Soc 132:11270–11277. doi:10.1021/ja1041989

    Article  CAS  Google Scholar 

  2. Appelhans AD, Dahl DA (2002) Measurement of external ion injection and trapping efficiency in the ion trap mass spectrometer and comparison with a predictive model. Int J Mass Spectrom 216:269–284. doi:10.1016/S1387-3806(02)00627-9

    Article  CAS  Google Scholar 

  3. Appelhans AD, Dahl DA (2005) SIMION ion optics simulations at atmospheric pressure. Int J Mass Spectrom 244:1–14. doi:10.1016/j.ijms.2005.03.010

    Article  CAS  Google Scholar 

  4. Arumugham-Achari AK, Grifoll J, Rosell-Llompart J (2013) Two-way coupled numerical simulation of electrospray with induced gas flow. J Aerosol Sci 65:121–133. doi:10.1016/j.jaerosci.2013.07.005

    Article  CAS  Google Scholar 

  5. Barth TJ, Jespersen DC (1989) The design and application of upwind schemes on unstructured meshes. Paper presented at the AIAA 27th Aerospace Sciences Meeting, Reno, Nevada

  6. Dahl DA (2000) SIMION for the personal computer in reflection. Int J Mass Spectrom 200:3–25

    Article  CAS  Google Scholar 

  7. Dahl DA, McJunkin TR, Scott JR (2007) Comparison of ion trajectories in vacuum and viscous environments using SIMION: Insights for instrument design. Int J Mass Spectrom 266:156–165. doi:10.1016/j.ijms.2007.07.008

    Article  CAS  Google Scholar 

  8. Daub CD, Cann NM (2011) How are completely desolvated ions produced in electrospray ionization: insights from molecular dynamics simulations. Anal Chem 83:8372–8376. doi:10.1021/ac202103p

    Article  CAS  Google Scholar 

  9. Deng W, Gomez A (2007) Influence of space charge on the scale-up of multiplexed electrosprays. J Aerosol Sci 38:1062–1078. doi:10.1016/j.jaerosci.2007.08.005

    Article  CAS  Google Scholar 

  10. Ding L, Sudakov M, Kumashiro S (2002) A simulation study of the digital ion trap mass spectrometer. Int J Mass Spectrom 221:117–138. doi:10.1016/S1387-3806(02)00921-1

    Article  CAS  Google Scholar 

  11. Fenn J, Mann M, Meng C, Wong S, Whitehouse C (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71. doi:10.1126/science.2675315

    Article  CAS  Google Scholar 

  12. FLUENT 6.3 UDF Manual (2006) Fluent Inc

  13. FLUENT 6.3 User’s Guide (2006) Fluent Inc

  14. Forbes MW, Sharifi M, Croley T, Lausevic Z, March RE (1999) Simulation of ion trajectories in a quadrupole ion trap: a comparison of three simulation programs. J Mass Spectrom 34:1219–1239. doi:10.1002/(SICI)1096-9888(199912)34:12<1219::AID-JMS897>3.0.CO;2-L

    Article  CAS  Google Scholar 

  15. Grifoll J, Rosell-Llompart J (2012) Efficient Lagrangian simulation of electrospray droplets dynamics. J Aerosol Sci 47:78–93. doi:10.1016/j.jaerosci.2012.01.001

    Article  CAS  Google Scholar 

  16. Han F et al (2012) Computational fluid dynamics-Monte Carlo method for calculation of the ion trajectories and applications in ion mobility spectrometry. Int J Mass Spectrom 309:13–21. doi:10.1016/j.ijms.2011.08.017

    CAS  Google Scholar 

  17. He L, Lubman DM (1997) Simulation of External ion injection, cooling and extraction processes with SIMION 6.0 for the Ion trap/reflectron time-of-flight mass spectrometer. Rapid Commun Mass Spectrom 11:1467–1477

    Article  CAS  Google Scholar 

  18. Helin Z, Jing L (2012) Molecular dynamics simulation of the behaviour of the charged nanodroplet in electrospray. Micro Nano Lett IET 7:1001–1004. doi:10.1049/mnl.2012.0673

    Article  Google Scholar 

  19. Jung JH, Oh H, Kim SS (2010) Numerical simulation of the deposition pattern in multiple electrohydrodynamic spraying. Powder Technol 198:439–444. doi:10.1016/j.powtec.2009.12.006

    Article  CAS  Google Scholar 

  20. Juraschek R, Dülcks T, Karas M (1999) Nanoelectrospray—more than just a minimized-flow electrospray ionization source. J Am Soc Mass Spectrom 10:300–308

    Article  CAS  Google Scholar 

  21. Jurčíček P, Liu L, Zou H, An Z, Xiao H (2014) Design, simulation and evaluation of improved air amplifier incorporating an ion funnel for nano–ESI MS. Eur J Mass Spectrom 20:143–154

    Article  Google Scholar 

  22. Karas M, Bahr U, Dülcks T (2000) Nano-electrospray ionization mass spectrometry: addressing analytical problems beyond routine Fresenius. J Anal Chem 366:669–676. doi:10.1007/s002160051561

    Article  CAS  Google Scholar 

  23. Lai H, McJunkin TR, Miller CJ, Scott JR, Almirall JR (2008) The predictive power of SIMION/SDS simulation software for modeling ion mobility spectrometry instruments. Int J Mass Spectrom 276:1–8. doi:10.1016/j.ijms.2008.06.011

    Article  CAS  Google Scholar 

  24. Launder BE, Spalding DB (1972) Lectures in mathematical models of turbulence. Academic, London

    Google Scholar 

  25. Manisali I, Chen DDY, Schneider BB (2006) Electrospray ionization source geometry for mass spectrometry: past, present, and future. TrAC Trends Anal Chem 25:243–256

    Article  CAS  Google Scholar 

  26. Meier L, Berchtold C, Schmid S, Zenobi R (2012) Extractive electrospray ionization mass spectrometry—enhanced sensitivity using an ion funnel. Anal Chem 84:2076–2080

    Article  CAS  Google Scholar 

  27. Meier L, Berchtold C, Schmid S, Zenobi R (2012) High mass resolution breath analysis using secondary electrospray ionization mass spectrometry assisted by an ion funnel. J Mass Spectrom 47:1571–1575. doi:10.1002/jms.3118

    Article  CAS  Google Scholar 

  28. Meier L, Berchtold C, Schmid S, Zenobi R (2012) Sensitive detection of drug vapors using an ion funnel interface for secondary electrospray ionization mass spectrometry. J Mass Spectrom 47:555–559. doi:10.1002/jms.2982

    Article  CAS  Google Scholar 

  29. Menter FR (1994) Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J 32:1598–1605. doi:10.2514/3.12149

    Article  Google Scholar 

  30. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere Publishing Corp, Washington, DC

    Google Scholar 

  31. Steinberg MZ, Breuker K, Elber R, Gerber RB (2007) The dynamics of water evaporation from partially solvated cytochrome c in the gas phase. Phys Chem Chem Phys 9:4690–4697

    Article  CAS  Google Scholar 

  32. Wilcox DC (1993) Comparison of two-equation turbulence models for boundary layers with pressure gradient. AIAA J 31:1414–1421. doi:10.2514/3.11790

    Article  CAS  Google Scholar 

  33. Wilhelm O, Madler L, Pratsinis SE (2003) Electrospray evaporation and deposition. J Aerosol Sci 34:815–836. doi:10.1016/S0021-8502(03)00034-X

    Article  CAS  Google Scholar 

  34. Wilm M (2011) Principles of electrospray ionization. Mol Cell Proteomics. doi:10.1074/mcp.R111.009407

    Google Scholar 

  35. Wilm MS, Mann M (1994) Electrospray and Taylor-Cone theory, Dole’s beam of macromolecules at last? Int J Mass Spectrom Ion Process 136:167–180. doi:10.1016/0168-1176(94)04024-9

    Article  CAS  Google Scholar 

  36. Wilm M, Mann M (1996) Analytical properties of the nanoelectrospray ion source. Anal Chem 68:1–8. doi:10.1021/ac9509519

    Article  CAS  Google Scholar 

  37. Wu G, Cooks R, Ouyang Z, Yu M, Chappell W, Plass W (2006) Ion trajectory simulation for electrode configurations with arbitrary geometries. J Am Soc Mass Spectrom 17:1216–1228. doi:10.1016/j.jasms.2006.05.004

    Article  CAS  Google Scholar 

  38. Xu J, Liu Y (2009) Monte Carlo simulation of ion transport in non-linear ion mobility spectrometry. Int J Ion Mobil Spectrom 12:149–156. doi:10.1007/s12127-009-0029-6

    Article  Google Scholar 

  39. Xu J, Whitten W (2008) Monte Carlo simulation of ion transport in ion mobility spectrometry. Int J Ion Mobil Spectrom 11:13–17. doi:10.1007/s12127-008-0001-x

    Article  CAS  Google Scholar 

  40. Yang W, Lojewski B, Wei Y, Deng W (2012) Interactions and deposition patterns of multiplexed electrosprays. J Aerosol Sci 46:20–33. doi:10.1016/j.jaerosci.2011.11.004

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 51075059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helin Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jurčíček, P., Liu, L. & Zou, H. Numerical simulation of Monte Carlo ion transport at atmospheric pressure within improved air amplifier geometry. Int. J. Ion Mobil. Spec. 17, 157–166 (2014). https://doi.org/10.1007/s12127-014-0154-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-014-0154-8

Keywords

Navigation