Skip to main content
Log in

Determination of formaldehyde release from wood-based panels using SPME-GC-FAIMS

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

Several standardized methods exist to determine formaldehyde (HCHO) release from wood-based panels (WBPs). These methods were developed decades ago to be used in manufacturers laboratories to provide a mean of production control. They are robust and take several hours to yield results. Modern WBP panel production, however, is a continuous process. Therefore the established methods are too time-consuming for process control and process optimization with respect to HCHO release. Moreover, there is a strong trend of lowering the regulatory HCHO emission limits. Thus, there is a need for a comparatively fast and precise method which is suitable for the use on-site in a WBP manufacturers laboratory. In this work, an optimization of the solid phase micro extraction gas chromatography high field asymmetric waveform ion mobility spectrometry (SPME-GC-FAIMS) method is presented with respect to GC-FAIMS settings and the calibration procedure. It is also shown that, in addition to WBP block samples, also particles can be used for the measurement. The industrial applicability of SPME-GC-FAIMS system was demonstrated by testing the HCHO release of freshly produced WBPs on-site in the manufacturers laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Andre N, Young TM, Rials TG (2009) Spectroscopic prediction of formaldehyde emission and thickness swell of wood panel. Patent. US 2009/0230306 A1, USA

  2. Anonymus (1989) Indoor air quality - Report on an WHO meeting. EURO Reports and Studies. World Health Organization - Regional Office for Europe, Kopenhagen. p. 70

  3. ATCM (2008) §93120 AIRBORNE TOXIC CONTROL MEASURE to reduce formaldehyde emissions from composite wood products [17 Cal. Code Regs. sections 93120–93120.12]. California Environmental Protection Agency Air Resources Board, Sacramento

    Google Scholar 

  4. ChemVerbots V (2003) Verordnung über Verbote und Beschränkungen des Inverkehrbringens gefährlicher Stoffe, Zubereitungen und Erzeugnisse nach dem Chemikaliengesetz. Chemikalien-Verbotsverordnung in der Fassung der Bekanntmachung vom 13. Juni 2003 (BGBl. I S. 867), die zuletzt durch Artikel 5 Absatz 40 des Gesetzes vom 24. Februar 2012 (BGBl. I S. 212) geändert worden ist

  5. Dunky M (1999) in Dunky M, Niemz P (2002) Holzwerkstoffe und Leime: Technologie und Einflussfaktoren. Springer Verlag, Berlin Heidelberg New York

  6. Eiceman GA, Tarassov A, Funk PA, Hughs SE, Nazarov EG, Miller RA (2003) Discrimination of combustion fuel sources using gas chromatography-planar field asymmetric-waveform ion mobility spectrometry. J Sep Sci 26(6–7):585–593

    Article  Google Scholar 

  7. EN 120 (1992) Wood-based panels; Determination of formaldehyde content; Extraction method called the perforator method. European Committee for Standardisation, Brussels, Belgium

  8. EN 13986 (2005) Wood-based panels for use in construction-Characteristics, evaluation of conformity and marking. European Committee for Standardisation, Brussels, Belgium

  9. EN 312 (2010) Wood-based panels; Particleboards - Specifications. European Committee for Standardisation, Brussels, Belgium

  10. EN 717–1 (2004) Wood-based panels - Determination of formaldehyde release - Part 1: Formaldehyde emission by the chamber method. European Committee for Standardisation, Brussels, Belgium

  11. EN 717–2 (1994) Wood-based panels - Determination of formaldehyde release - Part 2: Formaldehyde release by the gas analysis method. European Committee for Standardisation, Brussels, Belgium

  12. Engström B (2008) Evaluation of formaldehyde emission from low emission composite board. Paper presented at the 3.Fachtagung Holztechologie, Göttingen, Germany

  13. Engström B, Hedqvist M (1999) Prediction of the properties of board by using a spectroscopic method combined with multivariate calibration. Patent, US005965888A, USA

  14. Hasener J (2011) Formaldehyd-Gasanalyse nach EN 717–2. Holz Zentralblatt 6:170

    Google Scholar 

  15. JIS A 5908 (2003) Particleboards; Japanese Industrial Standard. Japanese Industrial Standards Committee, Tokyo, Japan

  16. Kim S (2010) Control of formaldehyde and TVOC emission from wood-based flooring composites at various manufacturing processes by surface finishing. J Hazard Mater 176(1–3):14–19

    Article  CAS  Google Scholar 

  17. Lawrence AH, Barbour RJ, Sutcliffe R (1991) Identification of wood species by ion mobility spectrometry. Anal Chem 63(13):1217–1221

    Article  CAS  Google Scholar 

  18. Leonhardt JW, Rohrbeck W, Bensch H (2000) A high resolution IMS for environmental studies. Int J Ion Mobil Spectrom 3(1):43–49

    CAS  Google Scholar 

  19. Limero T, Reese E, Cheng P, Trowbridge J (2011) Preparation of a gas chromatograph-differential mobility spectrometer to measure target volatile organic compounds on the international space station. Int J Ion Mobil Spectrom 14(2–3):81–91

    Article  Google Scholar 

  20. Mantau U (2012) Standorte der Holzwirtschaft, Holzrohstoffmonitoring, Holzwerkstoffindustrie-Kapazitätsentwicklung und Holzrohstoffnutzung im Jahr 2010. Universität Hamburg, Zentrum Holzwirtschaft. Arbeitsbereich Ökonomie der Holz- und Forstwirtschaft. Hamburg

  21. Martos PA, Pawliszyn J (1998) Sampling and determination of formaldehyde using solid-phase microextraction with on-fiber derivatization. Anal Chem 70(11):2311–2320

    Article  CAS  Google Scholar 

  22. Marutzky R (1989) Possibility of diminishing the indoors formaldehyde content. Holz Roh Werkst 47(5):207–211

    Article  CAS  Google Scholar 

  23. Marutzky R, Flentge A, Boehme C (1992) Formaldehyde emission of MDF in dependence of density profile. Holz Roh Werkst 50(6):239–240

    Article  CAS  Google Scholar 

  24. Marutzky R, Mehlhorn L, Menzel W (1981) Reducing the formaldehyde emission from furniture. Holz Roh Werkst 39(1):7–10

    Article  Google Scholar 

  25. Mauruschat D, Schumann A, Meinlschmidt P, Gunschera J, Salthammer T (2014) Application of Gas chromatography – field asymmetric Ion mobility spectrometry (GC-FAIMS) for the detection of organic preservatives in wood. Int J Ion Mobil Spectrom 17:1–9

    Article  CAS  Google Scholar 

  26. Meyer B, Boehme C (1995) Massivholz und Formaldehyd. Eur J Wood Wood Prod 53(1):135–135

    Article  Google Scholar 

  27. Miller RA, Nazarov E, Coy SL, Krylov E (2006) Miniature differential mobility spectrometer as an a pre-filter for atmospheric-pressure mass spectrometry. Int J Ion Mobil Spectrom 9(1):35–39

    CAS  Google Scholar 

  28. Nasch T (1953) The colorimetric estimation of formaldehyde by means of the Hantzsch reaction. Biochem J 55:416–421

    Google Scholar 

  29. Perr JM, Furton KG, Almirall JR (2005) Solid phase microextraction ion mobility spectrometer interface for explosive and taggant detection. J Sep Sci 28(2):177–183

    Article  CAS  Google Scholar 

  30. Risholm-Sundman M, Larsen A, Vestin E, Weibull A (2007) Formaldehyde emission - comparison of different standard methods. Atmos Environ 41(15):3193–3202

    Article  CAS  Google Scholar 

  31. Roffael E (1982) Die Formaldehydabgabe von Spanplatten und anderen Werkstoffen. DRW-Verlag Weinberger-KG, Leinfelden-Echterdingen

    Google Scholar 

  32. Schäfer M, Roffael E (2000) On the formaldehyde release of wood. Eur J Wood Wood Prod 58(4):259–264

    Article  Google Scholar 

  33. Schumann A, Lenth C, Hasener J, Steckel V (2012) Detection of volatile organic compounds from wood-based panels by gas chromatography-field asymmetric ion mobility spectrometry (GC-FAIMS). Int J Ion Mobil Spectrom 15(3):157–168

    Article  CAS  Google Scholar 

  34. Telgheder U, Malinowski M, Jochmann M (2009) Determination of volatile organic compounds by solid-phase microextraction - gas chromatography-differential mobility spectrometry. Int J Ion Mobil Spectrom 12(4):123–130

    Article  CAS  Google Scholar 

  35. Weigl M, Wimmer R, Sykacek E, Steinwender M (2009) Wood-borne formaldehyde varying with species, wood grade, and cambial age. For Prod J 59(1–2):88–92

    CAS  Google Scholar 

  36. Zscheppank C, Telgheder U, Molt K (2012) Stir-bar sorptive extraction and TDS-IMS for the detection of pesticides in aqueous samples. Int J Ion Mobil Spectrom 15:257–264

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is part of the project “WoodSens” - Developing and implementing formaldehyde online-senor systems in wood-based panel processing, which is supported by the WoodWisdom ERA-Net; the Federal Ministry of Food and Agriculture based on a decision of the Parliament of the Federal Republic of Germany. The authors thankfully acknowledge the financial support. The authors also acknowledge the project partner Glunz AG, for the implementation of the industrial trial. In this context, the authors especially acknowledge Thomas Schneider and Alfred Pfemeter for their advice and support in the organization and implementation of the industrial trial.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Himmel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Himmel, S., Mai, C., Schumann, A. et al. Determination of formaldehyde release from wood-based panels using SPME-GC-FAIMS. Int. J. Ion Mobil. Spec. 17, 55–67 (2014). https://doi.org/10.1007/s12127-014-0150-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-014-0150-z

Keywords

Navigation