Skip to main content
Log in

Preparation of a gas chromatograph-differential mobility spectrometer to measure target volatile organic compounds on the international space station

  • Technical Report
  • Published:
International Journal for Ion Mobility Spectrometry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Johnston RS, Dietlein L (eds) (1977) Biomedical results of Skylab, NASA SP377. NASA Scientific and Technical Information Office, Washington

    Google Scholar 

  2. Proceedings of the Skylab Life Sciences Symposium, Vol. 1, Lyndon B. Johnson Space Center, Houston, Texas, August 1974, JSC-09275, or NASA Technical Memorandum TM X-58154, November 1974

  3. Liebich H, Bertsch W, Zlatkis A, Schneider H (1975) Volatile organic components in the Skylab 4 spacecraft atmosphere. Aviat Space Environ Med 46:1002–1006

    CAS  Google Scholar 

  4. Limero T (1990) Solid Sorbent Air Sampler for the characterization of contaminants in spacecraft atmospheres. In: Proceedings of 1990 EPA/AW&MA International Symposium: Measurement of Toxic and Related Air Pollutants, Raleigh, NC

  5. Air Toxics—Monitoring methods (TO-1, TO-14, TO-14a and TO-15). U.S. Environmental Protection Agency, http://www.epa.gov/ttnamti1/airtox.html.

  6. Guidelines for developing spacecraft maximum allowable concentrations for space station contaminants (1996) National Academy Press, Washington, DC

  7. Garcia H, Limero T, James J (1992) Setting spacecraft maximum allowable concentrations for 1 hour or 24 hour contingency exposures to airborne chemicals. 22nd International Conference on Environmental Systems, Technical Paper 921410, Seattle, WA, 1992

  8. Spacecraft maximum allowable concentrations for selected airborne contaminants, Vol. 1–5 (1994) National Academy Press, Washington, DC

  9. Limero TF et al. (1992) A volatile organic analyzer for space station: description and evaluation of a gas chromatography/ion mobility spectrometer. 22nd International Conference on Environmental Systems, SAE Technical Paper 921385, Seattle, WA, 1992

  10. Limero T, Cross J, Brittain A, Breach J (1996) Selection and development of GC/IMS technology to measure targeted volatile organic compounds in spacecraft habitable volumes. In: Proceedings from the 5th International Workshop on Ion Mobility Spectrometry, Jackson, Wyoming, 1996, ISBN 0-9660915-0-7

  11. Brittain A, Bass P, Breach J, Limero T (2000) Instrumentation for analyzing volatile organic compounds in inhabited enclosed environments. 30th International Conference on Environmental Systems, SAE Technical Paper 2000-01-2434, Toulouse, France, 2000

  12. Limero T, Reese E, Trowbridge J, Hohman R, James JT (2002) The Volatile Organic Analyzer (VOA) aboard the International Space Station. 32nd International Conference on Environmental Systems, SAE Technical Paper 2002-01-2407, San Antonio, Texas, 2002

  13. Limero T (2003) Validation of the Volatile Organic Analyzer (VOA) aboard the International Space Station. 33rd International Conference on Environmental Systems, SAE Technical Paper 2003-01-2646, Vancouver, BC, 2003

  14. Limero T (2007) Volatile Organic Analyzer (VOA) in 2006: repair, revalidation, and restart of Elektron event. In: International Society for Ion Mobility Spectrometry (ISIMS) Conference Proceedings, 2007

  15. Limero T (2007) Revalidation of the Volatile Organic Analyzer following a major on orbit maintenance activity. 37th International Conference on Environmental Systems, SAE Technical Paper 2007-01-3220, Chicago, IL, 2007

  16. Limero T, Reese E (2002) First operational use of the ISS-VOA in a potential contingency event. Int J Ion Mobil Spectrom 5(3):27–30

    CAS  Google Scholar 

  17. Limero T, “Volatile Organic Analyzer (VOA) in 2006: Repair, Revalidation, and Restart of Elektron Event”, 16th International Society for Ion Mobility Spectrometry (ISIMS) Conference Proceedings, Mikkeli, Finland, July 2007

  18. Limero T, Cheng P, Boyd J (2006) Evaluation of gas chromatography-differential mobility spectrometry for the measurement of air contaminants in spacecraft. 36th International Conference on Environmental Systems, SAE Technical Paper 2006-01-2153, Norfolk, VA, 2006

  19. Limero T, Reese E, Cheng P (2008) Demonstration of the microAnalyzer™’s measurement of common trace volatile organic compounds in spacecraft atmospheres. 38th International Conference on Environmental Systems, SAE Technical Paper 2008-01-2128, San Francisco, CA, 2008

  20. Eiceman G, Krylov E, Krylova N, Douglas K, Porter L, Nazarov E, Miller R (2002) A molecular and structural basis for compensation voltage. Int J Ion Mobil Spectrom 5(3):1–6

    CAS  Google Scholar 

  21. Eiceman G, Krylov E, Krylova N, Douglas K, Porter L, Nazarov E, Miller R, Limero T (2006) A molecular and structural basis for compensation voltage. Int J Ion Mobil Spectrom 5(3):1–6

    Google Scholar 

  22. Eiceman G, Krylov E, Krylova N, Douglas K, Porter L, Nazarov E, Miller R, Ambient Monitoring Technology Information Center (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Limero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Limero, T., Reese, E., Cheng, P. et al. Preparation of a gas chromatograph-differential mobility spectrometer to measure target volatile organic compounds on the international space station. Int. J. Ion Mobil. Spec. 14, 81–91 (2011). https://doi.org/10.1007/s12127-011-0071-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-011-0071-z

Keywords

Navigation