Skip to main content

Advertisement

Log in

Towards Topological Mechanisms Underlying Experience Acquisition and Transmission in the Human Brain

  • Regular Article
  • Published:
Integrative Psychological and Behavioral Science Aims and scope Submit manuscript

Abstract

Experience is a process of awareness and mastery of facts or events, gained through actual observation or second-hand knowledge. Recent findings reinforce the idea that a naturalized epistemological approach is needed to further advance our understanding of the nervous mechanisms underlying experience. This essay is an effort to build a coherent topological-based framework able to elucidate particular aspects of experience, e.g., how it is acquired by a single individual, transmitted to others and collectively stored in form of general ideas. Taking into account concepts from neuroscience, algebraic topology and Richard Avenarius’ philosophical analytical approach, we provide a scheme which is cast in an empirically testable fashion. In particular, we emphasize the foremost role of variants of the Borsuk-Ulam theorem, which tells us that, when a pair of opposite (antipodal) points on a sphere are mapped onto a single point in Euclidean space, the projection provides a description of both antipodal points. These antipodes stand for nervous functions and activities of the brain correlated with the mechanisms of acquisition and transmission of experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afraimovich, V., Tristan, I., Varona, P., & Rabinovich, M. (2013). Transient dynamics in complex systems: heteroclinic sequences with multidimensional unstable manifolds. Discontinuity, Nonlinearity and Complexity, 2(1), 21–41.

    Article  Google Scholar 

  • Arai, M., Brandt, V., & Dabaghian, Y. (2014). The effects of theta precession on spatial learning and simplicial complex dynamics in a topological model of the hippocampal spatial map. PLoS Computational Biology, 10(6), e1003651.

    Article  PubMed  PubMed Central  Google Scholar 

  • Avenarius, R. (1908). Kritik Der Reinen Erfahrung von Richard Avenarius. Lepzig: C.R. Reisland.

    Google Scholar 

  • Barrett, L. F., & Simmons, W. K. (2015). Interoceptive predictions in the brain. Nature Reviews. Neuroscience, 16(7), 419–429.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barttfeld, P., Uhrig, L., Sitt, J. D., Sigman, M., Jarraya, B., & Dehaene, S. (2015). Signature of consciousness in the dynamics of resting-state brain activity. PNAS, 112(3), 887–892.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beggs, J. M., & Timme, N. (2012). Being critical of criticality in the brain. Frontiers in Physiology, 3, 163.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bengson, J. J., Kelley, T. A., Zhang, X., Wang, J.-L., & Mangun, G. R. (2014). Spontaneous neural fluctuations predict decisions to attend. Journal of Cognitive Neuroscience, 26(11), 2578–2584.

    Article  PubMed  Google Scholar 

  • Benson, A. R., Gleich, D. F., & Leskovec, J. (2016). Higher-order organization of complex networks. Science, 353(6295), 163–166. doi:10.1126/science.aad9029.

    Article  PubMed  PubMed Central  Google Scholar 

  • Betzel, R. F., Byrge, L., He, Y., Goñi, J., Zuo, X.-N., & Sporns, O. (2014). Changes in structural and functional connectivity among resting-state networks across the human lifespan. NeuroImage, 2, 345–357.

    Article  Google Scholar 

  • Beyer, W. A., & Zardecki, A. (2004). The early history of the ham sandwich theorem. American Mathematical Monthly, 1, 58–61.

    Article  Google Scholar 

  • Borsuk, M. (1933). Drei sätze über die n-dimensional euklidische sphäre. Fundamenta Mathematicae XX, 177–190.

  • Borsuk, M. (1958-1959). Concerning the classification of topological spaces from the standpoint of the theory of retracts. Fundamenta Mathematicae XLVI, 177–190.

  • Borsuk, M. (1969). Fundamental retracts and extensions of fundamental sequences. Fundamenta Mathematicae, 1, 55–85.

    Google Scholar 

  • Cavell, S. (2002). Knowing and acknowledging must We mean what We say (pp. 238–266). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Chen, Z., Gomperts, S. N., Yamamoto, J., & Wilson, M. A. (2014). Neural representation of spatial topology in the rodent hippocampus. Neural Computation, 26, 1–39.

    Article  PubMed  Google Scholar 

  • Chicharro, D., & Ledberg, A. (2012). When two become one: the limits of causality analysis of brain dynamics. PloS One, 7(3), e32466. doi:10.1371/journal.pone.0032466.

    Article  PubMed  PubMed Central  Google Scholar 

  • Churchland, P. M. (2007). Neurophilosophy At Work. Cambridge Univ Pr. ISBN-10: 0521864720. ISBN-13: 978–0521864725.

  • Collins, G. P. (2004). The shapes of space. Scientific American, 291, 94–103.

    Article  PubMed  Google Scholar 

  • Dabaghian, Y., Mémoli, F., Frank, L., & Carlsson, G. (2012). A topological paradigm for hippocampal spatial map formation using persistent homology. PLoS Computational Biology, 8(8), e1002581.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dabaghian, Y., Brandt, V. L., & Frank, L. M. (2014). Reconceiving the hippocampal map as a topological template. eLife, 3, e03476.

    Article  PubMed  PubMed Central  Google Scholar 

  • de Arcangelis, L., & Herrmann, H. J. (2010). Learning as a phenomenon occurring in a critical state. PNAS, 107, 3977–3981.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deco, G., & Jirsa, V. K. (2012). Ongoing cortical activity at rest: criticality, multistability, and ghost attractors. The Journal of Neuroscience, 32(10), 3366–3375.

    Article  PubMed  Google Scholar 

  • Dodson, C. T. J., & Parker, P. E. (1997). A user’s guide to algebraic topology. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Filmer, H. L., Dux, P. E., & Mattingley, J. B. (2014). Applications of transcranial direct current stimulation for understanding brain function. Trends in Neurosciences, 12, 742–753.

    Article  Google Scholar 

  • Friston, K. (2008). Hierarchical models in the brain. PLoS Computational Biology, 4, e1000211.

    Article  PubMed  PubMed Central  Google Scholar 

  • Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews. Neuroscience, 11(2), 127–138.

    Article  PubMed  Google Scholar 

  • Friston, K., Rigoli, F., Ognibene, D., Mathys, C., Fitzgerald, T., & Pezzulo, G. (2015). Active inference and epistemic value. Cognitive Neuroscience, 13, 1–28.

    Article  Google Scholar 

  • Gibson, J. J. (1950). The perception of the visual world. Greenwood: Greenwood Press, Westpost, Conn.

    Google Scholar 

  • Gibson, J. J. (1971). The information available in pictures. Leonardo, 4, 27–35.

    Article  Google Scholar 

  • Gibson, J. J. (1979). The theory of affordance in the ecological approach to visual perception. Hillsdale: Erlbaum.

    Google Scholar 

  • Gibson, J. J. (1986). The ecological approach to visual perception. Boston: Houghton-Mifflin.

    Google Scholar 

  • Giusti, C., Pastalkova, C., & Itskov. (2015). Clique topology reveals intrinsic geometric structure in neural correlations. Proceedings of the National Academy of Sciences of the United States of America, 112(44), 13455–13460. doi:10.1073/pnas.1506407112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gorgolewski, K. J., Lurie, D., Urchs, S., Kipping, J. A., Craddock, R. C., Milham, M. P., Margulies, D. S., & Smallwood, J. (2014). A correspondence between individual differences in the brain's intrinsic functional architecture and the content and form of self-generated thoughts. PloS One, 9(5), e97176.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grau, C., Ginhoux, R., Riera, A., Nguyen, T. L., Chauvat, H., Berg, M., Amengual, J. L., Pascual-Leone, A., & Ruffini, G. (2014). Conscious brain-to-brain communication in humans using non-invasive technologies. PloS One, 9(8), e105225. doi:10.1371/journal.pone.0105225.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heft, H. (1997). The relevance of Gibson’s ecological approach to perception for environment-behavior studies. In G. T. Moore & R. W. Marans (Eds.), Advances in environment, behavior, and design. New York: Plenum Press.

    Google Scholar 

  • Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. PNAS, 79, 2554–2558.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hume, D. (1739–40). A Treatise of Human Nature: Being an Attempt to introduce the experimental Method of Reasoning into Moral Subjects. Penguin Classics; New Ed edition (31 Oct. 1985).

  • Izhikevich, E. M. (2010). Hybrid spiking models. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 368(1930), 5061–5070.

    Article  PubMed  Google Scholar 

  • Jirsa, V. K., Fuchs, A., & Kelso, J. A. S. (1998). Connecting cortical and behavioral dynamics: bimanual coordination. Neural Computation Archive, 10(8), 2019–2045.

    Article  Google Scholar 

  • Johnson-Laird, P. N. (2010). Mental models and human reasoning. PNAS, 107(43), 18243–18250.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kida, T., Tanaka, E., & Kakigi, R. (2016). Multi-dimensional dynamics of human electromagnetic brain activity. Frontiers in Human Neuroscience, 9, 713. doi:10.3389/fnhum.2015.00713.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kleineberg, K.-K., Boguñá, M., Serrano, M. A., & Papadopoulos, F. (2016). Hidden geometric correlations in real multiplex networks. Nature Physics. doi:10.1038/nphys3812.

    Google Scholar 

  • Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B., & Shams, L. (2007). Causal inference in multisensory perception. PloS One, 2(9), e943.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lech, R. K., Güntürkün, O., & Suchan, B. (2016). An interplay of fusiform gyrus and hippocampus enables prototype- and exemplar-based category learning. Behavioural Brain Research. doi:10.1016/j.bbr.2016.05.049.

    PubMed  Google Scholar 

  • Lewin, K. (1935). A dynamic theory of personality. New York and London: McGraw_Hill Book Company, Inc.

    Google Scholar 

  • Lewin, K. (1936). Principles of Topological Psychology (F. Heider and G. M. Heider, transl.). New York: McGraw-Hill.

    Book  Google Scholar 

  • Libet, B., Gleason, C. A., Wright, E. W., & Pearl, D. K. (1983). Time of conscious intention to act in relation to onset of cerebral activity (readiness-potential). The unconscious initiation of a freely voluntary act. Brain, 106(Pt 3), 623–642.

    Article  PubMed  Google Scholar 

  • Linkenkaer-Hansen, K., Nikouline, V. V., Palva, J. M., & Ilmoniemi, R. J. (2001). Long-range temporal correlations and scaling behavior in human brain oscillations. The Journal of Neuroscience, 21(4), 1370–1377.

    PubMed  Google Scholar 

  • Luce, R. D., D'Zmura, M., Hoffman, D., Iverson, G. J., Romney, A. K. (eds) (1995) Geometric representations of perceptual phenomena. Papers in honor of Tarow Indow on his 70th birthday. Lawrence Erlbaum Associates.

  • Luneburg, R. K. (1947). Mathematical analysis of binocular vision. Princeton: Princeton University Press.

    Google Scholar 

  • Marr D (1982) Vision. A computational investigation into the human representation and processing of visual information. New York: W. H. Freeman and Company.

  • Marsaglia, G. (1972). Choosing a point from the surface of a sphere. Annals of Mathematical Statistics, 43(2), 645–646.

    Article  Google Scholar 

  • Matoušek, J. (2003). Using the Borsuk–ulam theorem. In Lectures on Topological Methods in Combinatorics and Geometry. Berlin Heidelberg: Springer-Verlag.

    Google Scholar 

  • Mazzucato, L., Fontanini, A., & La Camera, G. (2016). Stimuli reduce the dimensionality of cortical activity. Frontiers in Systems Neuroscience. doi:10.3389/fnsys.2016.00011.

    PubMed  PubMed Central  Google Scholar 

  • Milton, R., Babichev, A., & Dabaghian, Y. A. (2015). A topological approach to synaptic connectivity and spatial memory. BMC Neuroscience, 16(Suppl 1), P44.

    Article  PubMed Central  Google Scholar 

  • Mitroi-Symeonidis, F.-C. (2015). Convexity and sandwich theorems. European Journal of Research in Applied Sciences, 1, 9–11.

    Google Scholar 

  • Nieuwenhuys, R., Voogd, J., & van Huijzen, C. (2008). The human central nervous system. Heidelberg: Springer.

    Book  Google Scholar 

  • Ogasawara, Y. (2010). Sufficient conditions for the existence of a primitive chaotic behavior. Journal of the Physical Society of Japan, 79(2010), 15002.

    Article  Google Scholar 

  • Ogasawara, Y., & Oishi, S. (2012). Consideration of a primitive chaos. Journal of the Physical Society of Japan, 81(2012), 103001.

    Article  Google Scholar 

  • Ogasawara, Y., & Oishi, S. (2014). Characteristic spaces emerging from primitive chaos. Journal of the Physical Society of Japan, 83(2014), 014001.

    Article  Google Scholar 

  • Ogasawara, Y. (2015). A structure behind primitive chaos. Journal of the Physical Society of Japan, 84(2015), 064007.

    Article  Google Scholar 

  • Papo, D. (2014). Functional significance of complex fluctuations in brain activity: from resting state to cognitive neuroscience. Frontiers in Systems Neuroscience, 8, 112.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parise, C. V., Spence, C., & Ernst, M. O. (2011). When correlation implies causation in multisensory integration. Current Biology, 22(1), 46–49.

    Article  PubMed  Google Scholar 

  • Peters, J. F. (2014). Topology of digital images. Visual pattern discovery in proximity spaces. In Intelligent Systems Reference Library. Berlin: Springer.

    Google Scholar 

  • Peters, J. F. (2016). Computational Proximity. Excursions in the Topology of Digital Images. Intelligent Systems Reference Library (p. 102). Switzerland: Springer Int. Pub. doi:10.1007/978–3–319-30262-1.

    Google Scholar 

  • Peters, J. F., Tozzi, A., & Ramanna, S. (2016). Brain tissue tessellation shows absence of canonical microcircuits. Neuroscience Letters, 626, 99–105. doi:10.1016/j.neulet.2016.03.052.

    Article  PubMed  Google Scholar 

  • Popper, K. R., Eccles, J. C. (1977). The self and its brain. Berlin: Springer International. p. 425. ISBN 3–540–08307-3. You would agree, I think, that in our experience of the world everything comes to us through the senses [...].

  • Robinson, P. A., Zhao, X., Aquino, K. M., Griffiths, J. D., Sarkar, S., & Mehta-Pandejee, G. (2016). Eigenmodes of brain activity: neural field theory predictions and comparison with experiment. NeuroImage. doi:10.1016/j.neuroimage.2016.04.050.

    Google Scholar 

  • Rock, I. (1983). The logic of perception. Cambridge: MIT Press.

    Google Scholar 

  • Roldán, É., Martínez, I. A., Parrondo, J. M. R., & Petrov, D. (2014). Universal features in the energetics of symmetry breaking. Nature Physics, 10(6), 457–461. doi:10.1038/nphys2940.

  • Russo Krauss, C. (2013). Il sistema dell'esperienza pura. Firenze: Le Càriti.

    Google Scholar 

  • Russo Krauss, C. (2015). L'empiriocriticismo di Richard Avenarius tra psicofisiologia e teoria della consocenza. In R. Avenarius (Ed.), Il concetto umano di mondo. Morcelliana: Brescia.

    Google Scholar 

  • Scholz, J. P., Kelso, J. A. S., & Schöner, G. (1987). Nonequilibrium phase transitions in coordinated biological motion: critical slowing down and switching time. Physics Letters A, 123(8), 390–394. doi:10.1016/0375-9601(87)90038-7.

    Article  Google Scholar 

  • Sengupta, B., Stemmler, M. B., & Friston, K. J. (2013). Information and efficiency in the nervous system--a synthesis. PLoS Computational Biology, 9(7), e1003157.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sengupta, B., Friston, K. J., & Penny, W. D. (2014). Efficient gradient computation for dynamical models. NeuroImage, 98, 521–527.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sengupta, B., Tozzi, A., Cooray, G. K., Douglas, P. K., & Friston, K. J. (2016). Towards a neuronal gauge theory. PLoS Biology, 14(3), e1002400.

    Article  PubMed  PubMed Central  Google Scholar 

  • Simas, T., Chavez, M., Rodriguez, P. R., & Diaz-Guilera, A. (2015). An algebraic topological method for multimodal brain networks comparisons. Frontiers in Psychology, 6, 904. doi:10.3389/fpsyg.2015.00904 .eCollection 2015

    Article  PubMed  PubMed Central  Google Scholar 

  • Singer, W., & Lazar, A. (2016). Does the cerebral cortex exploit high-dimensional, non-linear dynamics for information processing? Frontiers in Computational Neuroscience. doi:10.3389/fncom.2016.00099.

    PubMed  PubMed Central  Google Scholar 

  • Stemmler, M., Mathis, A., & Herz, A. V. M. (2015). Connecting multiple spatial scales to decode the population activity of grid cells. Science Advances, 1, e1500816.

    Article  PubMed  PubMed Central  Google Scholar 

  • Suppes, P. (2002). Representation and invariance of scientific structures. Stanford: Center for the Study of Language and Information Publication.

    Google Scholar 

  • Tognoli, E., & Kelso, J. A. (2014). Enlarging the scope: grasping brain complexity. Frontiers in Systems Neuroscience, 8, 122.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tononi, G. (2008). Consciousness as integrated information: a provisional manifesto. The Biological Bulletin, 215(3), 216–242.

    Article  PubMed  Google Scholar 

  • Tozzi, A. (2016). Borsuk-Ulam Theorem Extended to Hyperbolic Spaces. In J. F. Peters (Ed.), Computational Proximity. Excursions in the Topology of Digital Images (pp. 169–171). doi:10.1007/978–3–319-30262-1.

    Google Scholar 

  • Tozzi, A., & Peters, J. F. (2016a). Towards a fourth spatial dimension of brain activity. Cognitive Neurodynamics. doi:10.1007/s11571-016-9379-z.

    PubMed  Google Scholar 

  • Tozzi, A., & Peters, J. F. (2016b). A topological approach unveils system invariances and broken symmetries in the brain. Journal of Neuroscience Research. doi:10.1002/jnr.23720.

    Google Scholar 

  • Tozzi, A., Fla, T., Peters, J. F. (2016). Building a minimum frustration framework for brain functions in long timescales. Journal of Neuroscience Research, 94(8), 702–716.

  • Vuksanovic, V., & Hövel, P. (2014). Functional connectivity of distant cortical regions: role of remote synchronization and symmetry in interactions. NeuroImage, 97, 1–8.

    Article  PubMed  Google Scholar 

  • Watanabe, T., Hirose, S., Wada, H., Imai, Y., Machida, T., Shirouzu, I., Konishi, S., Miyashita, Y., & Masuda, N. (2014). Energy landscapes of resting-state brain networks. Frontiers in Neuroinformatics, 8, 12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weeks, J. R. (2002). The shape of space (IInd ed.). New York-Basel: Marcel Dekker, inc..

    Google Scholar 

  • Weyl, H. (1982). Symmetry. Princeton: Princeton University Press.

    Google Scholar 

  • Whitehead, A. N. (1919). An enquiry concerning the principles of natural knowledge. Cambridge: Cambridge University Press.

    Google Scholar 

  • Whitehead, A. N., & Russell, B. (1910). Principia mathematica (1st ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Zeeman, E. C. (1962). The topology of the brain and visual perception. In M. K. Fort Jr. (Ed.), Topology of 3-manifolds and related topics (pp. 240–256). Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Zlotnik, A., Nagao, R., Kiss, I. Z., & Li, J. S. (2016). Phase-selective entrainment of nonlinear oscillator ensembles. Nature Communications, 7, 10788. doi:10.1038/ncomms10788.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Authors would like to thank Chiara Russo Krauss and Thomas Feldges for commenting on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Tozzi.

Ethics declarations

Conflict of Interest

The Author Tozzi declares that he has no conflict of interest. The Author Peters declares that he/she has no conflict of interest.

Human Study

This article does not contain any studies with human participants or animals performed by any of the Authors.

Informed Consent

Not needed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tozzi, A., Peters, J.F. Towards Topological Mechanisms Underlying Experience Acquisition and Transmission in the Human Brain. Integr. psych. behav. 51, 303–323 (2017). https://doi.org/10.1007/s12124-017-9380-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12124-017-9380-z

Keywords

Navigation