Skip to main content
Log in

Recurrent Oropharyngeal Squamous Cell Carcinomas Maintain Anti-tumor Immunity and Multinucleation Levels Following Completion of Radiation

  • Research
  • Published:
Head and Neck Pathology Aims and scope Submit manuscript

Abstract

Objective

Oropharyngeal squamous cell carcinoma (OPSCC) recurrence is almost universally fatal. Development of effective therapeutic options requires an improved understanding of recurrent OPSCC biology.

Methods

We analyzed paired primary-recurrent OPSCC from Veterans treated at the Michael E. DeBakey Veterans Affairs Medical Center between 2000 and 2020 who received curative intent radiation-based treatment (with or without chemotherapy). Patient tumors were analyzed using standard immunohistochemistry and automated imaging of infiltrating lymphocytes and multinucleated tumor cells coupled to machine learning algorithms.

Results

Primary and recurrent tumors demonstrated high concordance via p16 and p53 immunohistochemistry, with comparable levels of multinucleation. In contrast, recurrent tumors demonstrated significantly higher levels of CD8+ tumor infiltrating lymphocytes (p<0.05) and higher levels of PD-L1 expression (p<0.05).

Conclusion

Exposure to chemo-radiation and recurrence following treatment preserves critical features of intrinsic tumor biology and the tumor immune microenvironment suggesting that novel treatment regimens may be as effective in the salvage setting as in the definitive intent setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Gravitt PE, Winer RL (2017) Natural history of HPV infection across the lifespan: role of viral latency. Viruses. https://doi.org/10.3390/v9100267

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gupta SM, Mania-Pramanik J (2019) Molecular mechanisms in progression of HPV-associated cervical carcinogenesis. J Biomed Sci 26(1):28. https://doi.org/10.1186/s12929-019-0520-2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kreimer AR, Villa A, Nyitray AG et al (2011) The epidemiology of oral HPV infection among a multinational sample of healthy men. Cancer Epidemiol Biomark Prev 20(1):172–82. https://doi.org/10.1158/1055-9965.EPI-10-0682

    Article  Google Scholar 

  4. Castellsague X (2008) Natural history and epidemiology of HPV infection and cervical cancer. Gynecol Oncol 110(3 Suppl 2):S4–S7. https://doi.org/10.1016/j.ygyno.2008.07.045

    Article  PubMed  Google Scholar 

  5. Lechner M, Liu J, Masterson L, Fenton TR (2022) HPV-associated oropharyngeal cancer: epidemiology, molecular biology and clinical management. Nat Rev Clin Oncol. 19(5):306–327. https://doi.org/10.1038/s41571-022-00603-7

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dahlstrom KR, Calzada G, Hanby JD et al (2013) An evolution in demographics, treatment, and outcomes of oropharyngeal cancer at a major cancer center: a staging system in need of repair. Cancer. 119(1):81–9. https://doi.org/10.1002/cncr.27727

    Article  PubMed  Google Scholar 

  7. Sandulache VC, Hamblin J, Lai S et al (2015) Oropharyngeal squamous cell carcinoma in the veteran population: association with traditional carcinogen exposure and poor clinical outcomes. Head Neck. 37(9):1246–53. https://doi.org/10.1002/hed.23740

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wilde DC, Castro PD, Bera K et al (2022) Oropharyngeal cancer outcomes correlate with p16 status, multinucleation and immune infiltration. Mod Pathol. https://doi.org/10.1038/s41379-022-01024-8

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zevallos JP, Kramer JR, Sandulache VC et al (2021) National trends in oropharyngeal cancer incidence and survival within the Veterans Affairs Health Care System. Head Neck 43(1):108–115. https://doi.org/10.1002/hed.26465

    Article  PubMed  Google Scholar 

  10. Elhalawani H, Mohamed ASR, Elgohari B et al (2020) Tobacco exposure as a major modifier of oncologic outcomes in human papillomavirus (HPV) associated oropharyngeal squamous cell carcinoma. BMC Cancer 20(1):912. https://doi.org/10.1186/s12885-020-07427-7

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vawda N, Banerjee RN, Debenham BJ (2019) Impact of smoking on outcomes of HPV-related oropharyngeal cancer treated with primary radiation or surgery. Int J Radiat Oncol Biol Phys 103(5):1125–1131. https://doi.org/10.1016/j.ijrobp.2018.11.046

    Article  PubMed  Google Scholar 

  12. Ang KK, Harris J, Wheeler R et al (2010) Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med 363(1):24–35. https://doi.org/10.1056/NEJMoa0912217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fakhry C, Zhang Q, Gillison ML et al (2019) Validation of NRG oncology/RTOG-0129 risk groups for HPV-positive and HPV-negative oropharyngeal squamous cell cancer: Implications for risk-based therapeutic intensity trials. Cancer 125(12):2027–2038. https://doi.org/10.1002/cncr.32025

    Article  CAS  PubMed  Google Scholar 

  14. Fakhry C, Zhang Q, Nguyen-Tan PF et al (2014) Human papillomavirus and overall survival after progression of oropharyngeal squamous cell carcinoma. J Clin Oncol 32(30):3365–73. https://doi.org/10.1200/JCO.2014.55.1937

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gillison ML, Zhang Q, Jordan R et al (2012) Tobacco smoking and increased risk of death and progression for patients with p16-positive and p16-negative oropharyngeal cancer. J Clin Oncol 30(17):2102–11. https://doi.org/10.1200/JCO.2011.38.4099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Koyuncu CF, Nag R, Lu C et al (2022) Image analysis reveals differences in tumor multinucleations in Black and White patients with human papillomavirus-associated oropharyngeal squamous cell carcinoma. Cancer 128(21):3831–3842. https://doi.org/10.1002/cncr.34446

    Article  CAS  PubMed  Google Scholar 

  17. Koyuncu CF, Lu C, Bera K et al (2021) Computerized tumor multinucleation index (MuNI) is prognostic in p16+ oropharyngeal carcinoma: a multi-site validation study. J Clin Invest. https://doi.org/10.1172/JCI145488

    Article  PubMed  PubMed Central  Google Scholar 

  18. Corredor G, Toro P, Koyuncu C et al (2021) An imaging biomarker of tumor-infiltrating lymphocytes to risk-stratify patients with HPV-associated oropharyngeal cancer. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djab215

    Article  PubMed Central  Google Scholar 

  19. Kemnade JO, Elhalawani H, Castro P et al (2020) CD8 infiltration is associated with disease control and tobacco exposure in intermediate-risk oropharyngeal cancer. Sci Rep 10(1):243. https://doi.org/10.1038/s41598-019-57111-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sandulache VC, Michikawa C, Kataria P et al (2018) High-risk TP53 mutations are associated with extranodal extension in oral cavity squamous cell carcinoma. Clin Cancer Res 24(7):1727–1733. https://doi.org/10.1158/1078-0432.CCR-17-0721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wahle BM, Zolkind P, Ramirez RJ et al (2022) Integrative genomic analysis reveals low T-cell infiltration as the primary feature of tobacco use in HPV-positive oropharyngeal cancer. iScience 25(5):104216. https://doi.org/10.1016/j.isci.2022.104216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zanoni DK, Patel SG, Shah JP (2019) Changes in the 8th Edition of the American Joint Committee on Cancer (AJCC) Staging of Head and Neck Cancer: Rationale and Implications. Curr Oncol Rep 21(6):52. https://doi.org/10.1007/s11912-019-0799-x

  23. Yemelyanova A, Vang R, Kshirsagar M et al (2011) Immunohistochemical staining patterns of p53 can serve as a surrogate marker for TP53 mutations in ovarian carcinoma: an immunohistochemical and nucleotide sequencing analysis. Mod Pathol 24(9):1248–53. https://doi.org/10.1038/modpathol.2011.85

    Article  CAS  PubMed  Google Scholar 

  24. Kobel M, Kang EY (2021) The many uses of p53 immunohistochemistry in gynecological pathology: proceedings of the ISGyP companion society session at the 2020 USCAP Annual9 Meeting. Int J Gynecol Pathol 40(1):32–40. https://doi.org/10.1097/PGP.0000000000000725

    Article  CAS  PubMed  Google Scholar 

  25. Lewis JS Jr, Beadle B, Bishop JA et al (2018) Human Papillomavirus testing in head and neck carcinomas: guideline from the College of American Pathologists. Arch Pathol Lab Med 142(5):559–597. https://doi.org/10.5858/arpa.2017-0286-CP

    Article  PubMed  Google Scholar 

  26. Janowczyk A, Zuo R, Gilmore H, Feldman M, Madabhushi A (2019) HistoQC: an open-source quality control tool for digital pathology slides. JCO Clin Cancer Inform 3:1–7. https://doi.org/10.1200/CCI.18.00157

    Article  PubMed  Google Scholar 

  27. Sung YN, Kim D, Kim J (2022) p53 immunostaining pattern is a useful surrogate marker for TP53 gene mutations. Diagn Pathol. 17(1):92. https://doi.org/10.1186/s13000-022-01273-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ruzinova MB, Lee YS, Duncavage EJ, Welch JS (2019) TP53 immunohistochemistry correlates with TP53 mutation status and clearance in decitabine-treated patients with myeloid malignancies. Haematologica. 104(8):e345–e348. https://doi.org/10.3324/haematol.2018.205302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Park E, Han H, Choi SE et al (2022) p53 immunohistochemistry and mutation types mismatching in high-grade serous ovarian cancer. Diagnostics (Basel). https://doi.org/10.3390/diagnostics12030579

    Article  PubMed  PubMed Central  Google Scholar 

  30. Koyuncu CF, Frederick MJ, Thompson LDR et al (2023) Machine learning driven index of tumor multinucleation correlates with survival and suppressed anti-tumor immunity in head and neck squamous cell carcinoma patients. Oral Oncol. 143:106459. https://doi.org/10.1016/j.oraloncology.2023.106459

    Article  PubMed  Google Scholar 

  31. Ward MC, Riaz N, Caudell JJ et al (2018) Refining patient selection for reirradiation of head and neck squamous carcinoma in the IMRT era: a multi-institution cohort study by the MIRI collaborative. Int J Radiat Oncol Biol Phys. 100(3):586–594. https://doi.org/10.1016/j.ijrobp.2017.06.012

    Article  PubMed  Google Scholar 

  32. Ward MC, Lee NY, Caudell JJ et al (2019) A competing risk nomogram to predict severe late toxicity after modern re-irradiation for squamous carcinoma of the head and neck. Oral Oncol. 90:80–86. https://doi.org/10.1016/j.oraloncology.2019.01.022

    Article  PubMed  Google Scholar 

  33. Sandulache VC, Vandelaar LJ, Skinner HD et al (2016) Salvage total laryngectomy after external-beam radiotherapy: a 20-year experience. Head Neck. 38(Suppl 1):E1962-8. https://doi.org/10.1002/hed.24355

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zafereo ME, Hanasono MM, Rosenthal DI et al (2009) The role of salvage surgery in patients with recurrent squamous cell carcinoma of the oropharynx. Cancer. 115(24):5723–33. https://doi.org/10.1002/cncr.24595

    Article  PubMed  Google Scholar 

  35. Ferris R, Gillison ML (2017) Nivolumab for squamous-cell cancer of head and neck. N Engl J Med. 376(6):596. https://doi.org/10.1056/NEJMc1615565

    Article  PubMed  Google Scholar 

  36. Burtness B, Harrington KJ, Greil R et al (2019) Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet. 394(10212):1915–1928. https://doi.org/10.1016/S0140-6736(19)32591-7

    Article  CAS  PubMed  Google Scholar 

  37. So YK, Byeon SJ, Ku BM et al (2020) An increase of CD8(+) T cell infiltration following recurrence is a good prognosticator in HNSCC. Sci Rep. 10(1):20059. https://doi.org/10.1038/s41598-020-77036-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pflumio C, Thomas J, Salleron J et al (2021) Expression of immune response biomarkers (PD-L1, p16, CD3+ and CD8+ TILs) in recurrent head and neck squamous cell carcinoma within previously irradiated areas. Oncol Rep 45(3):1273–1283. https://doi.org/10.3892/or.2021.7928

    Article  CAS  PubMed  Google Scholar 

  39. Girolami I, Marletta S, Fiorentino V et al (2023) Effect of radio-chemotherapy on PD-L1 immunohistochemical expression in head and neck squamous cell carcinoma. J Pers Med. https://doi.org/10.3390/jpm13020363

    Article  PubMed  PubMed Central  Google Scholar 

  40. Park BJ, Mattox AK, Clayburgh D et al (2022) Chemoradiation therapy alters the PD-L1 score in locoregional recurrent squamous cell carcinomas of the head and neck. Oral Oncol 135:106183. https://doi.org/10.1016/j.oraloncology.2022.106183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karabajakian A, Bouaoud J, Michon L et al (2021) Longitudinal assessment of PD-L1 expression and gene expression profiles in patients with head and neck cancer reveals temporal heterogeneity. Oral Oncol 119:105368. https://doi.org/10.1016/j.oraloncology.2021.105368

    Article  CAS  PubMed  Google Scholar 

  42. Croce MV, Rabassa ME, Pereyra A, Segal-Eiras A (2008) Differential expression of MUC1 and carbohydrate antigens in primary and secondary head and neck squamous cell carcinoma. Head Neck 30(5):647–57. https://doi.org/10.1002/hed.20756

    Article  PubMed  Google Scholar 

  43. Weber A, Bellmann U, Bootz F, Wittekind C, Tannapfel A (2002) INK4a-ARF alterations and p53 mutations in primary and consecutive squamous cell carcinoma of the head and neck. Virchows Arch 441(2):133–42. https://doi.org/10.1007/s00428-002-0637-6

    Article  CAS  PubMed  Google Scholar 

  44. Weber A, Bellmann U, Bootz F, Wittekind C, Tannapfel A (2002) Expression of p53 and its homologues in primary and recurrent squamous cell carcinomas of the head and neck. Int J Cancer 99(1):22–8. https://doi.org/10.1002/ijc.10296

    Article  CAS  PubMed  Google Scholar 

  45. Hedberg ML, Goh G, Chiosea SI et al (2016) Genetic landscape of metastatic and recurrent head and neck squamous cell carcinoma. J Clin Invest 126(4):1606. https://doi.org/10.1172/JCI86862

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a Career Development Award to VCS from the Veterans Administration Clinical Science Research and Development division (1IK2CX001953) and through the Dan L Duncan Comprehensive Cancer Center (P30-CA125123) and Human Tissue Acquisition & Pathology Core Baylor College of Medicine. Dr Madabhushi’s work is supported from grants supported by the National Cancer Institute under award numbers 1U24CA199374-01, R01CA249992-01A1, R01CA202752-01A1, R01CA208236-01A1, R01CA216579-01A1, R01CA220581-01A1, R01CA257612-01A1, 1U01CA239055-01, 1U01CA248226-01, 1U54CA254566-01, National Heart, Lung and Blood Institute 1R01HL15127701A1, R01HL15807101A1, National Institute of Biomedical Imaging and Bioengineering 1R43EB028736-01, National Center for Research Resources under award number 1 C06 RR12463-01; VA Merit Review Award IBX004121A from the United States Department of Veterans Affairs Biomedical Laboratory Research and Development Service, the Office of the Assistant Secretary of Defense for Health Affairs, through the Breast Cancer Research Program (W81XWH-19-1-0668), the Prostate Cancer Research Program (W81XWH-15-1-0558, W81XWH-20-1-0851), the Lung Cancer Research Program (W81XWH-18-1-0440, W81XWH-20-1-0595), the Peer Reviewed Cancer Research Program (W81XWH-18-1-0404, W81XWH-21-1-0345), the Kidney Precision Medicine Project (KPMP) Glue Grant, the Ohio Third Frontier Technology Validation Fund, the Mayo Clinic Breast Cancer SPORE grant P50 CA116201 from the National Institutes of Health, the Clinical and Translational Science Collaborative of Cleveland (UL1TR0002548) from the National Center for Advancing Translational Sciences (NCATS) component of the National Institutes of Health and NIH roadmap for Medical Research, The Wallace H. Coulter Foundation Program in the Department of Biomedical Engineering at Case Western Reserve University, sponsored research agreements from Bristol Myers-Squibb, Boehringer-Ingelheim, and AstraZeneca.

Author information

Authors and Affiliations

Authors

Contributions

PC, GC, CK, LAN, TJ, TL collected and analyzed the data. JSL, AM, MJF, VCS supervised data analysis and provided quality assurance for all data collection and analysis. PC, GC, CK, JSL, AM, MJ, VCS drafted the manuscript. All authors reviewed and participated in the revision process for the manuscript. PC and VCS prepared the figures.

Corresponding author

Correspondence to Vlad C. Sandulache.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

There are no conflicts of interest directly related to this work. Dr. Sandulache is a consultant for Femtovox Inc. Dr. Madabhushi is an equity holder in Picture Health, Elucid Bioimaging, and Inspirata Inc. Currently he serves on the advisory board of Picture Health, Aiforia Inc, and SimBioSys. He also currently consults for Roche, Biohme, and Castle Biosciences. He also has sponsored research agreements with AstraZeneca, Boehringer-Ingelheim, Eli-Lilly and Bristol Myers-Squibb. His technology has been licensed to Picture Health and Elucid Bioimaging. He is also involved in 3 different R01 grants with Inspirata Inc.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castro, P., Corredor, G., Koyuncu, C. et al. Recurrent Oropharyngeal Squamous Cell Carcinomas Maintain Anti-tumor Immunity and Multinucleation Levels Following Completion of Radiation. Head and Neck Pathol 17, 952–960 (2023). https://doi.org/10.1007/s12105-023-01597-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12105-023-01597-z

Keywords

Navigation