Skip to main content
Log in

Genomic Profiling of the Craniofacial Ossifying Fibroma by Next-Generation Sequencing

  • Original Paper
  • Published:
Head and Neck Pathology Aims and scope Submit manuscript

Abstract

Background

Ossifying fibroma (OF) of the craniofacial skeleton is a fibro-osseous lesion characterized by various patterns of bone formation in a cellular fibroblastic stroma. The molecular landscape of OF remains mostly unknown. There are a few known pathogenic abnormalities in OF, including HRPT2 mutations in conventional OF and SATB2 translocations in juvenile psammomatoid OF. On the other hand, conflicting reports exist regarding MDM2 gene amplification and chromosomal copy number alterations (CNA) in OF.

Methods

Surgically removed biopsies and curettage specimens from OF patients were obtained. Clinical, radiographic, and pathologic features of tumors were reviewed. Genomic DNA was extracted from formalin-fixed, paraffin-embedded blocks of tumor tissue. Capture-based DNA next-generation sequencing targeting the coding regions 529 cancer genes and select introns was performed.

Results

We identified 17 OF cases from 8 male and 8 female patients with mean age of 22 years (range 1–58 years). Nine case occurred in the gnathic bones and 8 in the extragnathic craniofacial bones. These cases included 3 juvenile psammomatoid OF, 6 conventional OF and 8 juvenile trabecular OF. Large-scale CNAs were present in 6 of 17 cases. Seven cases (41%) had focal amplifications including FOSB (n = 2, 11%), FOS (n = 4, 23%), COL1A1 (n = 4, 23%) and TBX3 (n = 5, 29%). Three cases (17%) had pathogenic CDC73 mutations. No cases showed focal MDM2 amplification.

Conclusions

Here, we provided a comprehensive molecular characterization of OF that reveals a heterogeneous genetic profile with occasional large-scale CNAs (n = 6, 35%). FOS, FOSB, and TBX3 genes that regulate AP-1 transcriptional complex are frequently altered in OF (n = 7, 41%), chiefly in juvenile trabecular OF. These genes encode transcription factors that act as downstream effectors of the MAP kinase signaling pathway. MDM2 amplification is an exceedingly rare event in OF, if present at all, so identification of this event should continue to raise concern for low-grade gnathic osteosarcoma. In summary, our findings suggest that OF represents a heterogeneous group of tumors at the genetic level but dysregulation of the AP-1 pathway may play a role in pathogenesis of juvenile trabecular OF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code Availability

Not applicable.

Disclosures

Data from this manuscript was presented, in part, at the annual meeting of United States and Canadian Academy of Pathology, with an embargo on publication until its completion, March 16, 2023.

The full research will be published in Head and Neck Pathology.

References

  1. El Mofty SK, Nelson B, Toyosawa S (2017) Fibro-osseous and osteochondromatous lesions. In: WHO Classification of Head and Neck Tumors. IARC Press, Lyon. pp 251–255.

  2. Hameed M, Horvai AE, Jordan RCK (2020) Soft tissue special issue: gnathic fibro-osseous lesions and osteosarcoma. Head Neck Pathol 14(1):70–82

    Article  PubMed  PubMed Central  Google Scholar 

  3. Shi RR, Li XF, Zhang R, Chen Y, Li TJ (2013) GNAS mutational analysis in differentiating fibrous dysplasia and ossifying fibroma of the jaw. Mod Pathol 26(8):1023–1031

    Article  CAS  PubMed  Google Scholar 

  4. Tabareau-Delalande F, Collin C, Gomez-Brouchet A et al (2013) Diagnostic value of investigating GNAS mutations in fibro-osseous lesions: a retrospective study of 91 cases of fibrous dysplasia and 40 other fibro-osseous lesions. Mod Pathol 26(7):911–921

    Article  CAS  PubMed  Google Scholar 

  5. Jour G, Oultache A, Sadowska J et al (2016) GNAS mutations in fibrous dysplasia: a comparative study of standard sequencing and locked nucleic acid PCR sequencing on decalcified and nondecalcified formalin-fixed paraffin-embedded tissues. Appl Immunohistochem Mol Morphol 24(9):660–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dujardin F, Binh MB, Bouvier C et al (2011) MDM2 and CDK4 immunohistochemistry is a valuable tool in the differential diagnosis of low-grade osteosarcomas and other primary fibro-osseous lesions of the bone. Mod Pathol 24(5):624–637

    Article  CAS  PubMed  Google Scholar 

  7. Limbach AL, Lingen MW, McElherne J et al (2020) The utility of MDM2 and CDK4 immunohistochemistry and MDM2 FISH in craniofacial osteosarcoma. Head Neck Pathol 14(4):889–898

    Article  PubMed  PubMed Central  Google Scholar 

  8. Newey PJ, Bowl MR, Cranston T, Thakker RV (2010) Cell division cycle protein 73 homolog (CDC73) mutations in the hyperparathyroidism-jaw tumor syndrome (HPT-JT) and parathyroid tumors. Hum Mutat 31(3):295–307

    Article  CAS  PubMed  Google Scholar 

  9. Pereira TDSF, Diniz MG, França JA et al (2018) The Wnt/β-catenin pathway is deregulated in cemento-ossifying fibromas. Oral Surg Oral Med Oral Pathol Oral Radiol 125(2):172–178

    Article  PubMed  Google Scholar 

  10. Horvai AE, Jordan RC (2014) Fibro-osseous lesions of the craniofacial bones: β-catenin immunohistochemical analysis and CTNNB1 and APC mutation analysis [published correction appears in Head Neck Pathol. 2014 Sep;8(3):369]. Head Neck Pathol 8(3):291–297

  11. Tabareau-Delalande F, Collin C, Gomez-Brouchet A et al (2015) Chromosome 12 long arm rearrangement covering MDM2 and RASAL1 is associated with aggressive craniofacial juvenile ossifying fibroma and extracranial psammomatoid fibro-osseous lesions. Mod Pathol 28(1):48–56

    Article  CAS  PubMed  Google Scholar 

  12. Ma M, Liu L, Shi R et al (2021) Copy number alteration profiling facilitates differential diagnosis between ossifying fibroma and fibrous dysplasia of the jaws. Int J Oral Sci 13(1):21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bahceci DH, Jordan RCK, Horvai AE (2022) MDM2 gene amplification and expression of MDM2 and CDK4 are rare in ossifying fibroma of craniofacial bones. Head Neck Pathol. https://doi.org/10.1007/s12105-022-01454-5

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sawyer JR, Tryka AF, Bell JM, Boop FA (1995) Nonrandom chromosome breakpoints at Xq26 and 2q33 characterize cemento-ossifying fibromas of the orbit. Cancer 76(10):1853–1859

    Article  CAS  PubMed  Google Scholar 

  15. Cleven A, Szuhai K, van IJzendoorn D et al (2022) Juvenile psammomatoid ossifying fibroma is defined by SATB2 rearrangement. Mod Pathol 35(Suppl 2):866

    Google Scholar 

  16. Baumhoer D, Haefliger S, Ameline B et al (2022) Ossifying fibroma of non-odontogenic origin: a fibro-osseous lesion in the craniofacial skeleton to be (re-)considered. Head Neck Pathol 16(1):257–267

    Article  PubMed  Google Scholar 

  17. Milde-Langosch K (2005) The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer 41(16):2449–2461

    Article  CAS  PubMed  Google Scholar 

  18. Whitmarsh AJ, Davis RJ (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med (Berl) 74(10):589–607

    Article  CAS  PubMed  Google Scholar 

  19. Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3(11):859–868

    Article  CAS  PubMed  Google Scholar 

  20. Wagner EF (2002) Functions of AP1 (Fos/Jun) in bone development. Ann Rheum Dis 61(Suppl 2):ii40–ii42.

  21. Bozec A, Bakiri L, Jimenez M, Schinke T, Amling M, Wagner EF (2010) Fra-2/AP-1 controls bone formation by regulating osteoblast differentiation and collagen production. J Cell Biol 190(6):1093–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Grigoriadis AE, Wang ZQ, Wagner EF (1995) Fos and bone cell development: lessons from a nuclear oncogene. Trends Genet 11(11):436–441

    Article  CAS  PubMed  Google Scholar 

  23. Fleischmann A, Hafezi F, Elliott C, Remé CE, Rüther U, Wagner EF (2000) Fra-1 replaces c-Fos-dependent functions in mice. Genes Dev 14(21):2695–2700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Takayanagi H, Kim S, Matsuo K et al (2002) RANKL maintains bone homeostasis through c-Fos-dependent induction of interferon-beta. Nature 416(6882):744–749

    Article  CAS  PubMed  Google Scholar 

  25. Lewinson D, Rachmiel A, Rihani-Bisharat S et al (2003) Stimulation of Fos- and Jun-related genes during distraction osteogenesis. J Histochem Cytochem 51(9):1161–1168

    Article  CAS  PubMed  Google Scholar 

  26. Miller AD, Curran T, Verma IM (1984) C-Fos protein can induce cellular transformation: a novel mechanism of activation of a cellular oncogene. Cell 36(1):51–60

    Article  CAS  PubMed  Google Scholar 

  27. van IJzendoorn DG, de Jong D, Romagosa C et al (2015) Fusion events lead to truncation of FOS in epithelioid hemangioma of bone. Genes Chromosomes Cancer 54(9):565–574

    Article  PubMed  Google Scholar 

  28. Huang SC, Zhang L, Sung YS et al (2015) Frequent FOS gene rearrangements in epithelioid hemangioma: a molecular study of 58 cases with morphologic reappraisal. Am J Surg Pathol 39(10):1313–1321

    Article  PubMed  PubMed Central  Google Scholar 

  29. Walther C, Tayebwa J, Lilljebjörn H et al (2014) A novel SERPINE1-FOSB fusion gene results in transcriptional up-regulation of FOSB in pseudomyogenic haemangioendothelioma. J Pathol 232(5):534–540

    Article  CAS  PubMed  Google Scholar 

  30. Antonescu CR, Chen HW, Zhang L et al (2014) ZFP36-FOSB fusion defines a subset of epithelioid hemangioma with atypical features. Genes Chromosomes Cancer 53(11):951–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fittall MW, Mifsud W, Pillay N et al (2018) Recurrent rearrangements of FOS and FOSB define osteoblastoma. Nat Commun 9(1):2150

    Article  PubMed  PubMed Central  Google Scholar 

  32. Amary F, Markert E, Berisha F et al (2019) FOS expression in osteoid osteoma and osteoblastoma: a valuable ancillary diagnostic tool. Am J Surg Pathol 43(12):1661–1667

    Article  PubMed  Google Scholar 

  33. Lam SW, Cleven AHG, Briaire-de Bruijn IH et al (2021) FOS rearrangement and expression in cementoblastoma. Am J Surg Pathol 45(5):690–693

    Article  PubMed  Google Scholar 

  34. van IJzendoorn DGP, Forghany Z, Liebelt F et al (2017) Functional analyses of a human vascular tumor FOS variant identify a novel degradation mechanism and a link to tumorigenesis. J Biol Chem 292(52):21282–21290

    Article  PubMed  Google Scholar 

  35. van IJzendoorn DGP, Bovée JVMG (2017) Vascular tumors of bone: the evolvement of a classification based on molecular developments. Surg Pathol Clin 10(3):621–635

    Article  PubMed  Google Scholar 

  36. Candeliere GA, Glorieux FH, Prud’homme J, St-Arnaud R (1995) Increased expression of the c-Fos proto-oncogene in bone from patients with fibrous dysplasia. N Engl J Med 332(23):1546–1551

    Article  CAS  PubMed  Google Scholar 

  37. Ghosh TK, Packham EA, Bonser AJ, Robinson TE, Cross SJ, Brook JD (2001) Characterization of the TBX5 binding site and analysis of mutations that cause Holt-Oram syndrome. Hum Mol Genet 10(18):1983–1994

    Article  CAS  PubMed  Google Scholar 

  38. Carlson H, Ota S, Campbell CE, Hurlin PJ (2001) A dominant repression domain in Tbx3 mediates transcriptional repression and cell immortalization: relevance to mutations in Tbx3 that cause ulnar-mammary syndrome. Hum Mol Genet 10(21):2403–2413

    Article  CAS  PubMed  Google Scholar 

  39. Washkowitz AJ, Gavrilov S, Begum S, Papaioannou VE (2012) Diverse functional networks of Tbx3 in development and disease. Wiley Interdiscip Rev Syst Biol Med 4(3):273–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Khan SF, Damerell V, Omar R et al (2020) The roles and regulation of TBX3 in development and disease. Gene 726:144223

    Article  CAS  PubMed  Google Scholar 

  41. Coll M, Seidman JG, Müller CW (2002) Structure of the DNA-bound T-box domain of human TBX3, a transcription factor responsible for ulnar-mammary syndrome. Structure 10(3):343–356

    Article  CAS  PubMed  Google Scholar 

  42. Wansleben S, Peres J, Hare S, Goding CR, Prince S (2014) T-box transcription factors in cancer biology. Biochim Biophys Acta 1846(2):380–391

    CAS  PubMed  Google Scholar 

  43. Mowla S, Pinnock R, Leaner VD, Goding CR, Prince S (2011) PMA-induced up-regulation of TBX3 is mediated by AP-1 and contributes to breast cancer cell migration. Biochem J 433(1):145–153

    Article  CAS  PubMed  Google Scholar 

  44. Chen JD, Morrison C, Zhang C, Kahnoski K, Carpten JD, Teh BT (2003) Hyperparathyroidism-jaw tumour syndrome. J Intern Med 253(6):634–642

    Article  CAS  PubMed  Google Scholar 

  45. Carpten JD, Robbins CM, Villablanca A et al (2002) HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet 32(4):676–680

    Article  CAS  PubMed  Google Scholar 

  46. Costa-Guda J, Pandya C, Strahl M et al (2021) Parafibromin abnormalities in ossifying fibroma. J Endocr Soc 5(7):bvab087

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chen Y, Hu DY, Wang TT et al (2016) CDC73 gene mutations in sporadic ossifying fibroma of the jaws. Diagn Pathol 11(1):91

    Article  PubMed  PubMed Central  Google Scholar 

  48. Raymond VM, Gray SW, Roychowdhury S et al (2015) Germline findings in tumor-only sequencing: points to consider for clinicians and laboratories. J Natl Cancer Inst 108(4):djv351

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was funded by the University California at San Francisco Department of Pathology, Clinical Research Endowment.

Author information

Authors and Affiliations

Authors

Contributions

All authors confirm they have meaningfully contributed to the research and read and approved the final manuscript. Data from this manuscript was presented, in part, at the annual meeting of United States and Canadian Academy of Pathology, with an embargo on publication until its completion, March 16, 2023.The full research will be published in Head and Neck Pathology.

Corresponding author

Correspondence to Andrew E. Horvai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This study has obtained IRB approval the Institutional Review Board at the University of California, San Francisco (IRB#11-05361). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to Participate

The need for informed consent was waived by the Institutional Review Board at the University of California, San Francisco (IRB#11-05361).

Consent for Publication

This type of study consent for publication is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 116 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahceci, D.H., Grenert, J.P., Jordan, R.C.K. et al. Genomic Profiling of the Craniofacial Ossifying Fibroma by Next-Generation Sequencing. Head and Neck Pathol 17, 722–730 (2023). https://doi.org/10.1007/s12105-022-01523-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12105-022-01523-9

Keywords

Navigation