Skip to main content

Advertisement

Log in

Selected Topics in the Pathology of the Thyroid and Parathyroid Glands in Children and Adolescents

  • Special Issue: Pediatric Pathology
  • Published:
Head and Neck Pathology Aims and scope Submit manuscript

Abstract

The goals of this chapter in keeping with the overall general themes of this special edition will be (1) to highlight aspects of development of the thyroid and parathyroid glands with particular focus on the role and contribution of the neural crest (or not) and how this may impact on the pathology that is seen, (2) to emphasize those lesions particularly more commonly arising in the pediatric population that actually generate specimens that the surgical pathologist would encounter, and (3) highlight more in depth specific lesions associated with heritable syndromes or specific gene mutations since the heritable syndromes tends to manifest in the pediatric age group. In this light, the other interesting areas of pediatric thyroid disease including medical thyroid diseases, congenital hypothyroidism, anatomic variants and aberrations of development that lead to structural anomalies will not be emphasized here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

taken from the 11-year-old boy presented above. This uniformly hypercellular gland is finely encapsulated (blue arrow in (b)) and abuts normal parathyroid tissue characteristic of adenomas (black arrow in (b)). Some thicker fibrous bands are seen traversing the adenoma proper but other features to suggest malignancy (capsular/vascular invasion, trabecular growth, atypia, atypical mitoses) were not seen (HE, 20X, 40X). c Intrathyroidal lesion seen in the thyroidectomy specimen from the young girl with MEN2A presented above that has similar cytological features to that of the medullary thyroid microcarcinoma. This lesion is clearly parathyroid gland confirmed by the diffuse staining with anti-PTH antibody in (d) (HE, 40X and PTH, 40X)

Similar content being viewed by others

References

  1. Benard V (2018) NPCR and SEER Incidence—U.S. Cancer Statistics 2001–2016 Public Use Database Data Standards and Data Dictionary. Centers for Disease Control (pp. 33–48). https://www.cdc.gov/cancer/uscs/public-use/pdf/npcr-seer-public-use-database-data-dictionary-2001-2016-508.pdf

  2. Qian ZJ, Jin MC, Meister KD, Megwalu UC. Pediatric Thyroid Cancer Incidence and Mortality Trends in the United States, 1973–2013. JAMA Otolaryngol Head Neck Surg. 2019;145(7):617–23. https://doi.org/10.1001/jamaoto.2019.0898.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bernier MO, Withrow DR, Berrington de Gonzalez A, Lam CJK, Linet MS, Kitahara CM, et al. Trends in pediatric thyroid cancer incidence in the United States, 1998–2013. Cancer. 2019;125(14):2497–505. https://doi.org/10.1002/cncr.32125.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Vanderpump MP. The epidemiology of thyroid disease. Br Med Bull. 2011;99:39–51. https://doi.org/10.1093/bmb/ldr030.

    Article  PubMed  Google Scholar 

  5. Paulson VA, Rudzinski ER, Hawkins DS. Thyroid cancer in the pediatric population. Genes (Basel). 2019. https://doi.org/10.3390/genes10090723.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Guille JT, Opoku-Boateng A, Thibeault SL, Chen H. Evaluation and management of the pediatric thyroid nodule. Oncologist. 2015;20(1):19–27. https://doi.org/10.1634/theoncologist.2014-0115.

    Article  PubMed  Google Scholar 

  7. Hong HS, Lee EH, Jeong SH, Park J, Lee H. Ultrasonography of various thyroid diseases in children and adolescents: a pictorial essay. Korean J Radiol. 2015;16(2):419–29. https://doi.org/10.3348/kjr.2015.16.2.419.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Koch CA, Sarlis NJ. The spectrum of thyroid diseases in childhood and its evolution during transition to adulthood: natural history, diagnosis, differential diagnosis and management. J Endocrinol Invest. 2001;24(9):659–75. https://doi.org/10.1007/BF03343911.

    Article  CAS  PubMed  Google Scholar 

  9. Nikiforov Y, Biddinger PW, Thompson LDR. Diagnostic pathology and molecular genetics of the thyroid. 2nd ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins; 2012.

    Google Scholar 

  10. Ozolek JA. Selective pathologies of the head and neck in children: a developmental perspective. Adv Anat Pathol. 2009;16(5):332–58. https://doi.org/10.1097/PAP.0b013e3181b50571.

    Article  CAS  PubMed  Google Scholar 

  11. Subramanyam P, Palaniswamy SS. Pictorial essay of developmental thyroid anomalies identified by Technetium thyroid scintigraphy. Indian J Nucl Med. 2015;30(4):323–7. https://doi.org/10.4103/0972-3919.159694.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nilsson M, Fagman H. Development of the thyroid gland. Development. 2017;144(12):2123–40. https://doi.org/10.1242/dev.145615.

    Article  CAS  PubMed  Google Scholar 

  13. Nilsson M, Williams D. On the origin of cells and derivation of thyroid cancer: C cell story revisited. Eur Thyroid J. 2016;5(2):79–93. https://doi.org/10.1159/000447333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kameda Y, Nishimaki T, Chisaka O, Iseki S, Sucov HM. Expression of the epithelial marker E-cadherin by thyroid C cells and their precursors during murine development. J Histochem Cytochem. 2007;55(10):1075–88. https://doi.org/10.1369/jhc.7A7179.2007.

    Article  CAS  PubMed  Google Scholar 

  15. Bohnsack BL, Kahana A. Thyroid hormone and retinoic acid interact to regulate zebrafish craniofacial neural crest development. Dev Biol. 2013;373(2):300–9. https://doi.org/10.1016/j.ydbio.2012.11.005.

    Article  CAS  PubMed  Google Scholar 

  16. Gordon J. Hox genes in the pharyngeal region: how Hoxa3 controls early embryonic development of the pharyngeal organs. Int J Dev Biol. 2018;62(11–12):775–83. https://doi.org/10.1387/ijdb.180284jg.

    Article  CAS  PubMed  Google Scholar 

  17. Nagayama Y, Shimamura M, Mitsutake N. Cancer stem cells in the thyroid. Front Endocrinol (Lausanne). 2016;7:20. https://doi.org/10.3389/fendo.2016.00020.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Scognamiglio T. C cell and follicular epithelial cell precursor lesions of the thyroid. Arch Pathol Lab Med. 2017;141(12):1646–52. https://doi.org/10.5858/arpa.2016-0399-RA.

    Article  CAS  PubMed  Google Scholar 

  19. Dupin E, Calloni G, Real C, Goncalves-Trentin A, Le Douarin NM. Neural crest progenitors and stem cells. C R Biol. 2007;330(6–7):521–9. https://doi.org/10.1016/j.crvi.2007.04.004.

    Article  CAS  PubMed  Google Scholar 

  20. Kameda Y. Cellular and molecular events on the development of mammalian thyroid C cells. Dev Dyn. 2016;245(3):323–41. https://doi.org/10.1002/dvdy.24377.

    Article  CAS  PubMed  Google Scholar 

  21. Lo CW, Cohen MF, Huang GY, Lazatin BO, Patel N, Sullivan R, et al. Cx43 gap junction gene expression and gap junctional communication in mouse neural crest cells. Dev Genet. 1997;20(2):119–32. https://doi.org/10.1002/(SICI)1520-6408(1997)20:2%3c119::AID-DVG5%3e3.0.CO;2-A.

    Article  CAS  PubMed  Google Scholar 

  22. Johansson E, Andersson L, Ornros J, Carlsson T, Ingeson-Carlsson C, Liang S, et al. Revising the embryonic origin of thyroid C cells in mice and humans. Development. 2015;142(20):3519–28. https://doi.org/10.1242/dev.126581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chisaka O, Kameda Y. Hoxa3 regulates the proliferation and differentiation of the third pharyngeal arch mesenchyme in mice. Cell Tissue Res. 2005;320(1):77–89. https://doi.org/10.1007/s00441-004-1042-z.

    Article  CAS  PubMed  Google Scholar 

  24. Kameda Y, Arai Y, Nishimaki T, Chisaka O. The role of Hoxa3 gene in parathyroid gland organogenesis of the mouse. J Histochem Cytochem. 2004;52(5):641–51. https://doi.org/10.1177/002215540405200508.

    Article  CAS  PubMed  Google Scholar 

  25. Kameda Y, Nishimaki T, Miura M, Jiang SX, Guillemot F. Mash1 regulates the development of C cells in mouse thyroid glands. Dev Dyn. 2007;236(1):262–70. https://doi.org/10.1002/dvdy.21018.

    Article  CAS  PubMed  Google Scholar 

  26. Filis P, Hombach-Klonisch S, Ayotte P, Nagrath N, Soffientini U, Klonisch T, et al. Maternal smoking and high BMI disrupt thyroid gland development. BMC Med. 2018;16(1):194. https://doi.org/10.1186/s12916-018-1183-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jarzab B, Handkiewicz-Junak D. Differentiated thyroid cancer in children and adults: same or distinct disease? Hormones (Athens). 2007;6(3):200–9.

    PubMed  Google Scholar 

  28. Karapanou O, Tzanela M, Vlassopoulou B, Kanaka-Gantenbein C. Differentiated thyroid cancer in childhood: a literature update. Hormones (Athens). 2017;16(4):381–7. https://doi.org/10.14310/horm.2002.1758.

    Article  PubMed  Google Scholar 

  29. Leboulleux S, Baudin E, Hartl DW, Travagli JP, Schlumberger M. Follicular cell-derived thyroid cancer in children. Horm Res. 2005;63(3):145–51. https://doi.org/10.1159/000084717.

    Article  CAS  PubMed  Google Scholar 

  30. Francis GL, Waguespack SG, Bauer AJ, Angelos P, Benvenga S, Cerutti JM, et al. Management guidelines for children with thyroid nodules and differentiated thyroid cancer. Thyroid. 2015;25(7):716–59. https://doi.org/10.1089/thy.2014.0460.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Santoro M, Carlomagno F. Central role of RET in thyroid cancer. Cold Spring Harb Perspect Biol. 2013;5(12):a009233. https://doi.org/10.1101/cshperspect.a009233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pachnis V, Mankoo B, Costantini F. Expression of the c-ret proto-oncogene during mouse embryogenesis. Development. 1993;119(4):1005–17.

    CAS  PubMed  Google Scholar 

  33. Khatami F, Tavangar SM. Multiple endocrine neoplasia syndromes from genetic and epigenetic perspectives. Biomark Insights. 2018;13:1177271918785129. https://doi.org/10.1177/1177271918785129.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Marini F, Falchetti A, Del Monte F, Carbonell Sala S, Gozzini A, Luzi E, et al. Multiple endocrine neoplasia type 1. Orphanet J Rare Dis. 2006;1:38. https://doi.org/10.1186/1750-1172-1-38.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Martucciello G, Lerone M, Bricco L, Tonini GP, Lombardi L, Del Rossi CG, et al. Multiple endocrine neoplasias type 2B and RET proto-oncogene. Ital J Pediatr. 2012;38:9. https://doi.org/10.1186/1824-7288-38-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Millar S, Bradley L, Donnelly DE, Carson D, Morrison PJ. Familial pediatric endocrine tumors. Oncologist. 2011;16(10):1388–96. https://doi.org/10.1634/theoncologist.2011-0120.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zirilli G, Salzano G, Corica D, Pajno GB, Mignosa C, Pepe G, et al. Thyrotropin serum levels and coexistence with Hashimoto’s thyroiditis as predictors of malignancy in children with thyroid nodules. Ital J Pediatr. 2019;45(1):96. https://doi.org/10.1186/s13052-019-0693-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hincza K, Kowalik A, Kowalska A. Current knowledge of germline genetic risk factors for the development of non-medullary thyroid cancer. Genes (Basel). 2019. https://doi.org/10.3390/genes10070482.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang H, Mehrad M, Ely KA, Liang J, Solorzano CC, Neblett WW 3rd, et al. Incidence and malignancy rates of indeterminate pediatric thyroid nodules. Cancer Cytopathol. 2019;127(4):231–9. https://doi.org/10.1002/cncy.22104.

    Article  PubMed  Google Scholar 

  40. Picarsic JL, Buryk MA, Ozolek J, Ranganathan S, Monaco SE, Simons JP, et al. Molecular characterization of sporadic pediatric thyroid carcinoma with the DNA/RNA ThyroSeq v2 next-generation sequencing assay. Pediatr Dev Pathol. 2016;19(2):115–22. https://doi.org/10.2350/15-07-1667-OA.1.

    Article  PubMed  Google Scholar 

  41. Geng J, Wang H, Liu Y, Tai J, Jin Y, Zhang J, et al. Correlation between BRAF (V600E) mutation and clinicopathological features in pediatric papillary thyroid carcinoma. Sci China Life Sci. 2017;60(7):729–38. https://doi.org/10.1007/s11427-017-9083-8.

    Article  CAS  PubMed  Google Scholar 

  42. Bertherat J. Carney complex (CNC). Orphanet J Rare Dis. 2006;1:21. https://doi.org/10.1186/1750-1172-1-21.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Dinarvand P, Davaro EP, Doan JV, Ising ME, Evans NR, Phillips NJ, et al. Familial adenomatous polyposis syndrome: an update and review of extraintestinal manifestations. Arch Pathol Lab Med. 2019;143(11):1382–98. https://doi.org/10.5858/arpa.2018-0570-RA.

    Article  CAS  PubMed  Google Scholar 

  44. Eng C, Peacocke M. PTEN and inherited hamartoma-cancer syndromes. Nat Genet. 1998;19(3):223. https://doi.org/10.1038/897.

    Article  CAS  PubMed  Google Scholar 

  45. Garofola C, Jamal Z, Gross GP. Cowden Disease (Multiple Hamartoma Syndrome). StatPearls. Treasure Island (FL)2020.

  46. Pilarski R. PTEN hamartoma tumor syndrome: a clinical overview. Cancers (Basel). 2019. https://doi.org/10.3390/cancers11060844.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schultz KAP, Rednam SP, Kamihara J, Doros L, Achatz MI, Wasserman JD, et al. PTEN, DICER1, FH, and their associated tumor susceptibility syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res. 2017;23(12):e76–82. https://doi.org/10.1158/1078-0432.CCR-17-0629.

    Article  CAS  PubMed  Google Scholar 

  48. Lloyd RV, Osamura RY, Klöppel Gn, Rosai J, World Health O, International Agency for Research on C. WHO classification of tumours of endocrine organs. 2017

  49. Spinelli C, Strambi S, Bakkar S, Nosiglia A, Elia G, Bertocchini A, et al. Surgical management of diffuse sclerosing variant of papillary thyroid carcinoma: experience in 25 patients. World J Surg. 2020;44(1):155–62. https://doi.org/10.1007/s00268-019-05230-5.

    Article  PubMed  Google Scholar 

  50. Low S, Sakai Y, Hoshino H, Hirokawa M, Kawashima H, Higuchi K, et al. High endothelial venule-like vessels and lymphocyte recruitment in diffuse sclerosing variant of papillary thyroid carcinoma. Pathology. 2016;48(7):666–74. https://doi.org/10.1016/j.pathol.2016.08.002.

    Article  CAS  PubMed  Google Scholar 

  51. Joung JY, Kim TH, Jeong DJ, Park SM, Cho YY, Jang HW, et al. Diffuse sclerosing variant of papillary thyroid carcinoma: major genetic alterations and prognostic implications. Histopathology. 2016;69(1):45–53. https://doi.org/10.1111/his.12902.

    Article  PubMed  Google Scholar 

  52. Kobayashi K, Fujimoto T, Ota H, Hirokawa M, Yabuta T, Masuoka H, et al. Calcifications in thyroid tumors on ultrasonography: calcification types and relationship with histopathological type. Ultrasound Int Open. 2018;4(2):E45–51. https://doi.org/10.1055/a-0591-6070.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Xue N, Xu Y, Huang P, Zhang S, Wang H, Yu F. Shear wave elastography diagnosis of the diffuse sclerosing variant of papillary thyroid carcinoma: a case report. Mol Clin Oncol. 2016;5(2):333–6. https://doi.org/10.3892/mco.2016.932.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Andriescu EC, Caruntu ID, Giusca SE, Lozneanu L, Ciobanu Apostol DG. Prognostic significance of cell-adhesion molecules in histological variants of papillary thyroid carcinoma. Rom J Morphol Embryol. 2018;59(3):721–7.

    PubMed  Google Scholar 

  55. Feng J, Shen F, Cai W, Gan X, Deng X, Xu B. Survival of aggressive variants of papillary thyroid carcinoma in patients under 55 years old: a SEER population-based retrospective analysis. Endocrine. 2018;61(3):499–505. https://doi.org/10.1007/s12020-018-1644-y.

    Article  CAS  PubMed  Google Scholar 

  56. Holoubek SA, Yan H, Khokar AH, Kuchta KM, Winchester DJ, Prinz RA, et al. Aggressive variants of papillary thyroid microcarcinoma are associated with high-risk features, but not decreased survival. Surgery. 2020;167(1):19–27. https://doi.org/10.1016/j.surg.2019.03.030.

    Article  PubMed  Google Scholar 

  57. Limberg J, Ullmann TM, Stefanova D, Buicko JL, Finnerty BM, Zarnegar R, et al. Does aggressive variant histology without invasive features predict overall survival in papillary thyroid cancer?: A national cancer database analysis. Ann Surg. 2019. https://doi.org/10.1097/SLA.0000000000003632.

    Article  PubMed  Google Scholar 

  58. Malandrino P, Russo M, Regalbuto C, Pellegriti G, Moleti M, Caff A, et al. Outcome of the diffuse sclerosing variant of papillary thyroid cancer: a meta-analysis. Thyroid. 2016;26(9):1285–92. https://doi.org/10.1089/thy.2016.0168.

    Article  PubMed  Google Scholar 

  59. Russo M, Malandrino P, Moleti M, Vermiglio F, Violi MA, Marturano I, et al. Tall cell and diffuse sclerosing variants of papillary thyroid cancer: outcome and predicting value of risk stratification methods. J Endocrinol Invest. 2017;40(11):1235–41. https://doi.org/10.1007/s40618-017-0688-9.

    Article  CAS  PubMed  Google Scholar 

  60. Nieminen TT, Walker CJ, Olkinuora A, Genutis LK, O’Malley M, Wakely PE, et al. Thyroid carcinomas that occur in familial adenomatous polyposis patients recurrently harbor somatic variants in APC, BRAF, and KTM2D. Thyroid. 2020;30(3):380–8. https://doi.org/10.1089/thy.2019.0561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Akaishi J, Kondo T, Sugino K, Ogimi Y, Masaki C, Hames KY, et al. Cribriform-morular variant of papillary thyroid carcinoma: clinical and pathological features of 30 cases. World J Surg. 2018;42(11):3616–23. https://doi.org/10.1007/s00268-018-4644-4.

    Article  PubMed  Google Scholar 

  62. Park J, Kim JW, Park H, Park SY, Kim TH, Kim SW, et al. Multifocality in a patient with cribriform-morular variant of papillary thyroid carcinoma is an important clue for the diagnosis of familial adenomatous polyposis. Thyroid. 2019;29(11):1606–14. https://doi.org/10.1089/thy.2019.0261.

    Article  CAS  PubMed  Google Scholar 

  63. Aydemirli MD, van der Tuin K, Hes FJ, van den Ouweland AMW, van Wezel T, Kapiteijn E, et al. A unique case of two somatic APC mutations in an early onset cribriform-morular variant of papillary thyroid carcinoma and overview of the literature. Fam Cancer. 2020;19(1):15–21. https://doi.org/10.1007/s10689-019-00146-4.

    Article  CAS  PubMed  Google Scholar 

  64. Brehar AC, Terzea DC, Ioachim DL, Procopiuc C, Brehar FM, Bulgar AC, et al. Cribriform-morular variant of papillary thyroid carcinoma at pediatric age - case report and review of the literature. Rom J Morphol Embryol. 2016;57(2):531–7.

    PubMed  Google Scholar 

  65. Mohindra S, Sakr H, Sturgis C, Chute DJ. LEF-1 is a sensitive marker of cribriform morular variant of papillary thyroid carcinoma. Head Neck Pathol. 2018;12(4):455–62. https://doi.org/10.1007/s12105-017-0873-3.

    Article  PubMed  Google Scholar 

  66. Hirokawa M, Matsuda K, Kudo T, Higuchi M, Suzuki A, Takada N, et al. Cribriform-morular variant of papillary thyroid carcinoma shows high Ki-67 labeling indices, despite its excellent prognosis. Pathobiology. 2019;86(5–6):248–53. https://doi.org/10.1159/000501097.

    Article  CAS  PubMed  Google Scholar 

  67. Perrier ND, van Heerden JA, Goellner JR, Williams ED, Gharib H, Marchesa P et al. Thyroid cancer in patients with familial adenomatous polyposis. World J Surg. 1998;22(7):738–42; discussion 43. doi:https://doi.org/10.1007/s002689900462.

  68. Tsuji H, Yasuoka H, Nakamura Y, Hirokawa M, Hiroshima T, Sakamaki Y, et al. Aggressive cribriform-morular variant of papillary thyroid carcinoma: report of an unusual case with pulmonary metastasis displaying poorly differentiated features. Pathol Int. 2018;68(12):700–5. https://doi.org/10.1111/pin.12728.

    Article  PubMed  Google Scholar 

  69. Ito Y, Ishikawa H, Kihara M, Hirokawa M, Kiyota N, Kasahara T, et al. Control of lung metastases and colon polyposis with lenvatinib therapy in a patient with Cribriform-Morular variant of papillary thyroid carcinoma and an APC gene mutation: a case study. Thyroid. 2019;29(10):1511–7. https://doi.org/10.1089/thy.2019.0121.

    Article  CAS  PubMed  Google Scholar 

  70. Laforga JB, Pedro T, Gasent JM. Pulmonary metastasis of cribriform-morular variant of thyroid carcinoma mimicking primary adenocarcinoma of the lung: a potential pitfall. Diagn Cytopathol. 2020;48(1):78–81. https://doi.org/10.1002/dc.24312.

    Article  PubMed  Google Scholar 

  71. Eng C. PTEN Hamartoma Tumor Syndrome. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K et al., editors. GeneReviews((R)). Seattle (WA)1993.

  72. Tan MH, Eng C. RE: Cowden syndrome and PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria. J Natl Cancer Inst. 2014;106(6):130. https://doi.org/10.1093/jnci/dju130.

    Article  Google Scholar 

  73. Yu W, Ni Y, Saji M, Ringel MD, Jaini R, Eng C. Cowden syndrome-associated germline succinate dehydrogenase complex subunit D (SDHD) variants cause PTEN-mediated down-regulation of autophagy in thyroid cancer cells. Hum Mol Genet. 2017;26(7):1365–75. https://doi.org/10.1093/hmg/ddx037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Eissing M, Ripken L, Schreibelt G, Westdorp H, Ligtenberg M, Netea-Maier R, et al. PTEN hamartoma tumor syndrome and immune dysregulation. Transl Oncol. 2019;12(2):361–7. https://doi.org/10.1016/j.tranon.2018.11.003.

    Article  PubMed  Google Scholar 

  75. Tosur M, Brandt ML, Athanassaki ID, Rednam SP. Considerations for total thyroidectomy in an adolescent with PTEN mutation. Ther Adv Endocrinol Metab. 2018;9(9):299–301. https://doi.org/10.1177/2042018818784517.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cho U, Mete O, Kim MH, Bae JS, Jung CK. Molecular correlates and rate of lymph node metastasis of non-invasive follicular thyroid neoplasm with papillary-like nuclear features and invasive follicular variant papillary thyroid carcinoma: the impact of rigid criteria to distinguish non-invasive follicular thyroid neoplasm with papillary-like nuclear features. Mod Pathol. 2017;30(6):810–25. https://doi.org/10.1038/modpathol.2017.9.

    Article  CAS  PubMed  Google Scholar 

  77. Nikiforov YE, Seethala RR, Tallini G, Baloch ZW, Basolo F, Thompson LD, et al. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2016;2(8):1023–9. https://doi.org/10.1001/jamaoncol.2016.0386.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Thompson LD. Ninety-four cases of encapsulated follicular variant of papillary thyroid carcinoma: a name change to Noninvasive Follicular Thyroid Neoplasm with Papillary-like Nuclear Features would help prevent overtreatment. Mod Pathol. 2016;29(7):698–707. https://doi.org/10.1038/modpathol.2016.65.

    Article  CAS  PubMed  Google Scholar 

  79. Rossi ED, Mehrotra S, Kilic AI, Toslak IE, Lim-Dunham J, Martini M, et al. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features in the pediatric age group. Cancer Cytopathol. 2018;126(1):27–35. https://doi.org/10.1002/cncy.21933.

    Article  CAS  PubMed  Google Scholar 

  80. Mariani RA, Kadakia R, Arva NC. Noninvasive encapsulated follicular variant of papillary thyroid carcinoma: Should it also be reclassified in children? Pediatr Blood Cancer. 2018;65(6):e26966. https://doi.org/10.1002/pbc.26966.

    Article  CAS  PubMed  Google Scholar 

  81. Wang H, Correa H, Sanders M, Neblett WW, Liang J. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features in children: an institutional experience and literature review. Pediatr Dev Pathol. 2020;23(2):121–6. https://doi.org/10.1177/1093526619866584.

    Article  PubMed  Google Scholar 

  82. Seethala RR, Baloch ZW, Barletta JA, Khanafshar E, Mete O, Sadow PM, et al. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features: a review for pathologists. Mod Pathol. 2018;31(1):39–55. https://doi.org/10.1038/modpathol.2017.130.

    Article  CAS  PubMed  Google Scholar 

  83. Thomas CM, Asa SL, Ezzat S, Sawka AM, Goldstein D. Diagnosis and pathologic characteristics of medullary thyroid carcinoma-review of current guidelines. Curr Oncol. 2019;26(5):338–44. https://doi.org/10.3747/co.26.5539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nelkin B. Recent advances in the biology and therapy of medullary thyroid carcinoma. Res. 2017;6:2184. https://doi.org/10.12688/f1000research.12645.1.

    Article  CAS  Google Scholar 

  85. Zhao Z, Yin XD, Zhang XH, Li ZW, Wang DW. Comparison of pediatric and adult medullary thyroid carcinoma based on SEER program. Sci Rep. 2020;10(1):13310. https://doi.org/10.1038/s41598-020-70439-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wells SA Jr, Asa SL, Dralle H, Elisei R, Evans DB, Gagel RF, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567–610. https://doi.org/10.1089/thy.2014.0335.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cai S, Deng H, Chen Y, Wu X, Guan X. Treatment of medullary thyroid carcinoma with apatinib: a case report and literature review. Med (Baltimore). 2017;96(50):e8704. https://doi.org/10.1097/MD.0000000000008704.

    Article  Google Scholar 

  88. Ozaki T, Nagashima K, Kusakabe T, Kakudo K, Kimura S. Development of thyroid gland and ultimobranchial body cyst is independent of p63. Lab Invest. 2011;91(1):138–46. https://doi.org/10.1038/labinvest.2010.137.

    Article  CAS  PubMed  Google Scholar 

  89. Preto A, Cameselle-Teijeiro J, Moldes-Boullosa J, Soares P, Cameselle-Teijeiro JF, Silva P, et al. Telomerase expression and proliferative activity suggest a stem cell role for thyroid solid cell nests. Mod Pathol. 2004;17(7):819–26. https://doi.org/10.1038/modpathol.3800124.

    Article  CAS  PubMed  Google Scholar 

  90. Rios Moreno MJ, Galera-Ruiz H, De Miguel M, Lopez MI, Illanes M, Galera-Davidson H. Inmunohistochemical profile of solid cell nest of thyroid gland. Endocr Pathol. 2011;22(1):35–9. https://doi.org/10.1007/s12022-010-9145-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. de Graaf P, van der Linde EM, Rosier P, Izeta A, Sievert KD, Bosch J, et al. Systematic review to compare urothelium differentiation with urethral epithelium differentiation in fetal development, as a basis for tissue engineering of the Male Urethra. Tissue Eng Part B. 2017;23(3):257–67. https://doi.org/10.1089/ten.TEB.2016.0352.

    Article  Google Scholar 

  92. Hazard JB. The C cells (parafollicular cells) of the thyroid gland and medullary thyroid carcinoma. A Rev Am J Pathol. 1977;88(1):213–50.

    CAS  Google Scholar 

  93. Wenig BM. Atlas of Head and Neck Pathology. Elsevier Health Sciences; 2015.

  94. <C CELLS AJP-1981.pdf>.

  95. Burke JF, Chen H, Gosain A. Parathyroid conditions in childhood. Semin Pediatr Surg. 2014;23(2):66–70. https://doi.org/10.1053/j.sempedsurg.2014.03.003.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Peissig K, Condie BG, Manley NR. Embryology of the parathyroid glands. Endocrinol Metab Clin North Am. 2018;47(4):733–42. https://doi.org/10.1016/j.ecl.2018.07.002.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gordon RJ, Levine MA. Genetic disorders of parathyroid development and function. Endocrinol Metab Clin North Am. 2018;47(4):809–23. https://doi.org/10.1016/j.ecl.2018.07.007.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Stokes VJ, Nielsen MF, Hannan FM, Thakker RV. Hypercalcemic disorders in children. J Bone Miner Res. 2017;32(11):2157–70. https://doi.org/10.1002/jbmr.3296.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Black BK, Ackerman LV. Tumors of the parathyroid; a review of twenty-three cases. Cancer. 1950;3(3):415–44. https://doi.org/10.1002/1097-0142(1950)3:3%3c415::aid-cncr2820030304%3e3.0.co;2-#.

    Article  CAS  PubMed  Google Scholar 

  100. Busaidy NL, Jimenez C, Habra MA, Schultz PN, El-Naggar AK, Clayman GL, et al. Parathyroid carcinoma: a 22-year experience. Head Neck. 2004;26(8):716–26. https://doi.org/10.1002/hed.20049.

    Article  PubMed  Google Scholar 

  101. Fiedler AG, Rossi C, Gingalewski CA. Parathyroid carcinoma in a child: an unusual case of an ectopically located malignant parathyroid gland with tumor invading the thymus. J Pediatr Surg. 2009;44(8):1649–52. https://doi.org/10.1016/j.jpedsurg.2009.04.024.

    Article  PubMed  Google Scholar 

  102. Fujimoto Y, Obara T, Ito Y, Kanazawa K, Aiyoshi Y, Nobori M. Surgical treatment of ten cases of parathyroid carcinoma: importance of an initial en bloc tumor resection. World J Surg. 1984;8(3):392–400. https://doi.org/10.1007/BF01655086.

    Article  CAS  PubMed  Google Scholar 

  103. Hamill J, Maoate K, Beasley SW, Corbett R, Evans J. Familial parathyroid carcinoma in a child. J Paediatr Child Health. 2002;38(3):314–7. https://doi.org/10.1046/j.1440-1754.2002.00802.x.

    Article  CAS  PubMed  Google Scholar 

  104. Herrera-Hernandez AA, Aranda-Valderrama P, Diaz-Perez JA, Herrera LP. Intrathyroidal parathyroid carcinoma in a pediatric patient. Pediatr Surg Int. 2011;27(12):1361–5. https://doi.org/10.1007/s00383-011-2904-6.

    Article  PubMed  Google Scholar 

  105. Kim HK, Oh YL, Kim SH, Lee DY, Kang HC, Lee JI, et al. Parafibromin immunohistochemical staining to differentiate parathyroid carcinoma from parathyroid adenoma. Head Neck. 2012;34(2):201–6. https://doi.org/10.1002/hed.21716.

    Article  PubMed  Google Scholar 

  106. Korpi-Hyovalti E, Cranston T, Ryhanen E, Arola J, Aittomaki K, Sane T, et al. CDC73 intragenic deletion in familial primary hyperparathyroidism associated with parathyroid carcinoma. J Clin Endocrinol Metab. 2014;99(9):3044–8. https://doi.org/10.1210/jc.2014-1481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. McHenry CR, Rosen IB, Walfish PG, Cooter N. Parathyroid crisis of unusual features in a child. Cancer. 1993;71(5):1923–7. https://doi.org/10.1002/1097-0142(19930301)71:5%3c1923::aid-cncr2820710531%3e3.0.co;2-v.

    Article  CAS  PubMed  Google Scholar 

  108. Meier DE, Snyder WH 3rd, Dickson BA, Margraf LR, Guzzetta PC Jr. Parathyroid carcinoma in a child. J Pediatr Surg. 1999;34(4):606–8. https://doi.org/10.1016/s0022-3468(99)90084-2.

    Article  CAS  PubMed  Google Scholar 

  109. Niramitmahapanya S, Deerochanawong C, Sarinnapakorn V, Sunthornthepvarakul T, Pingsuthiwong S, Athipan P, et al. Somatic HRPT2 mutation (Arg234X) of parathyroid carcinoma associated with slipped capital femoral epiphysis: a first case report. J Med Assoc Thai. 2016;99(Suppl 2):S201–5.

    PubMed  Google Scholar 

  110. Rahman MM, Karim SS, Joarder AI, Mubin S, Abir MM, Morshed MS. Parathyroid carcinoma in a 10 years old female child. Mymensingh Med J. 2015;24(3):619–23.

    CAS  PubMed  Google Scholar 

  111. Righi A, Dimosthenous K, Mize J. Mediastinal parathyroid carcinoma with tumor implants in a child: a unique occurrence. Int J Surg Pathol. 2008;16(4):458–60. https://doi.org/10.1177/1066896908315821.

    Article  PubMed  Google Scholar 

  112. Schantz A, Castleman B. Parathyroid carcinoma: A study of 70 cases. Cancer. 1973;31(3):600–5.

    Article  CAS  Google Scholar 

  113. Serrano-Gonzalez M, Shay S, Austin J, Maceri DR, Pitukcheewanont P. A germline mutation of HRPT2/CDC73 (70 G>T) in an adolescent female with parathyroid carcinoma: first case report and a review of the literature. J Pediatr Endocrinol Metab. 2016;29(9):1005–12. https://doi.org/10.1515/jpem-2016-0109.

    Article  CAS  PubMed  Google Scholar 

  114. Vinodh M, Rajeshwari A. Parathyroid carcinoma presenting as genu valgum. Indian Pediatr. 2012;49(2):156. https://doi.org/10.1007/s13312-012-0014-8.

    Article  CAS  PubMed  Google Scholar 

  115. Young TO, Saltzstein EC, Boman DA. Parathyroid carcinoma in a child: unusual presentation with seizures. J Pediatr Surg. 1984;19(2):194–6. https://doi.org/10.1016/s0022-3468(84)80448-0.

    Article  CAS  PubMed  Google Scholar 

  116. Zivaljevic VR, Jovanovic MD, Djordjevic MS, Diklic AD, Paunovic IR. Case report of parathyroid carcinoma in a pediatric patient. Int J Pediatr Otorhinolaryngol. 2019;124:120–3. https://doi.org/10.1016/j.ijporl.2019.06.003.

    Article  PubMed  Google Scholar 

  117. Kelly TG, Shattuck TM, Reyes-Mugica M, Stewart AF, Simonds WF, Udelsman R, et al. Surveillance for early detection of aggressive parathyroid disease: carcinoma and atypical adenoma in familial isolated hyperparathyroidism associated with a germline HRPT2 mutation. J Bone Miner Res. 2006;21(10):1666–71. https://doi.org/10.1359/jbmr.060702.

    Article  CAS  PubMed  Google Scholar 

  118. Rosai J, DeLellis R, Carcangiu M, Frable W, Tallina G. Tumors of the thyroid and parathyroid glands. 4th ed. AFIP Atlas of Tumor Pathology. ARP Press; 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Ozolek.

Ethics declarations

Conflict of interest

The author has no disclosures or conflicts of interest.

Ethical Approval

This study does not use human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozolek, J.A. Selected Topics in the Pathology of the Thyroid and Parathyroid Glands in Children and Adolescents. Head and Neck Pathol 15, 85–106 (2021). https://doi.org/10.1007/s12105-020-01274-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12105-020-01274-5

Keywords

Navigation