Skip to main content

Advertisement

Log in

The Microenvironment of Head and Neck Cancers: Papillomavirus Involvement and Potential Impact of Immunomodulatory Treatments

  • Proceeding of the North American Society of Head and Neck Pathology Companion Meeting, March 1, 2020, Los Angeles, California
  • Published:
Head and Neck Pathology Aims and scope Submit manuscript

Abstract

Cancer progression can be understood as the result of deregulation of tumors’ immune microenvironments. Recent studies of the alterations of microenvironments highlight their significant influence on the prognosis of patients with head and neck squamous cell carcinoma (HNSCC). It is necessary to better characterize tumor-infiltrating lymphocytes by focusing, in particular, on the tumor escape mechanisms from immune surveillance. One of the best described tumor immune system evasion mechanisms is the expression of co-stimulation molecules that constitute so-called “immune checkpoints”. These molecules regulate the immune response by either activating or inhibiting its effects. The programmed cell death 1 (PD-1) surface protein is an inhibitory co-stimulation molecule that induces exhaustion of activated T-lymphocytes (TLs, T cells) through binding with its ligands, PD-L1 and PD-L2. Half of HNSCCs exhibit PD-L1 expression with higher expression identified in human papillomavirus (HPV) positive tumors. Numerous studies have shown differences between the microenvironments of HPV+ and HPV− cancers. Notably, infiltrations of exhausted CD4+ PD1+ and CD8+ PD1+ T cells are far higher in the microenvironment of HPV+ tumors. The FDA has approved the use of molecules that target PD-1 for the treatment of HNSCC. The first results of clinical trials with anti-PD-1 blockers in HNSCC show improved patient survival, particularly long-term survival without recurrence. However, discordant results were sometimes observed, and improvements in defining cellular predictive markers are necessary. With the development of immunotherapies, pathologists play a role in the selection of patients who are eligible for specific treatments and assessment of their prognosis in greater detail. An automated, quantitative in situ imaging system that integrates both multispectral imaging and automated slide scanning could be developed in pathology laboratories. The evaluation of PD-L1 expression has only been used to stratify the administration of first-line immunotherapy. The validation of these tests and their routine interpretation is essential. No specific recommendation is adopted for HPV+ HNSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011;331:1565–70.

    Article  CAS  PubMed  Google Scholar 

  2. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang Y, Huang S, Gong D, Qin Y, Shen Q. Programmed death-1 upregulation is correlated with dysfunction of tumor-infiltrating CD8+ T lymphocytes in human non-small cell lung cancer. Cell Mol Immunol. 2010;7:389–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Badoual C, Hans S, Merillon N, Van Ryswick C, Ravel P, Benhamouda N, et al. PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res. 2013;73:128–38.

    Article  CAS  PubMed  Google Scholar 

  5. Kinter AL, Godbout EJ, McNally JP, Sereti I, Roby GA, O’Shea MA, et al. The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J Immunol (Baltimore, Md 1950). 2008;181:6738–46.

    Article  CAS  Google Scholar 

  6. Sznol M, Chen L. Antagonist antibodies to PD-1 and B7–H1 (PD-L1) in the treatment of advanced human cancer. Clin Cancer Res. 2013;19:1021–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Outh-Gauer S, Alt M, Le Tourneau C, Augustin J, Broudin C, Gasne C, et al. Immunotherapy in head and neck cancers: a new challenge for immunologists, pathologists and clinicians. Cancer Treat Rev. 2018;65:54–64.

    Article  CAS  PubMed  Google Scholar 

  8. Tanaka A, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Cell Res. 2017;27:109–18.

    Article  CAS  PubMed  Google Scholar 

  9. Badoual C. Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res. 2006;12:465–72.

    Article  CAS  PubMed  Google Scholar 

  10. Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel). 2014;6:1670–90.

    Article  CAS  Google Scholar 

  11. She L, Qin Y, Wang J, Liu C, Zhu G, Li G, et al. Tumor-associated macrophages derived CCL18 promotes metastasis in squamous cell carcinoma of the head and neck. Cancer Cell Int. 2018;18:120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Leemans CR, Snijders PJF, Brakenhoff RH. The molecular landscape of head and neck cancer. Nat Rev Cancer. 2018;18:269–82.

    Article  CAS  PubMed  Google Scholar 

  13. Zandberg DP, Strome SE. The role of the PD-L1:PD-1 pathway in squamous cell carcinoma of the head and neck. Oral Oncol. 2014;50:627–32.

    Article  CAS  PubMed  Google Scholar 

  14. Yearley J, Gibson C, Yu N. PD-L2 expression in human tumors: relevance to anti-PD-1 therapy in cancer. Clin Cancer Res An Off J Am Assoc Cancer Res. 2017;23:3158–67.

    Article  CAS  Google Scholar 

  15. Ahmadi N, Gao K, Chia N, Kwon MS, Palme CE, Gupta R, et al. Association of PD-L1 expression in oral squamous cell carcinoma with smoking, sex, and p53 expression. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;128:631–8.

    Article  PubMed  Google Scholar 

  16. Ukpo OC, Thorstad WL, Lewis JS. B7–H1 expression model for immune evasion in human papillomavirus-related oropharyngeal squamous cell carcinoma. Head Neck Pathol. 2013;7:113–21.

    Article  PubMed  Google Scholar 

  17. Moratin J, Metzger K, Safaltin A, Herpel E, Hoffmann J, Freier K, et al. Upregulation of PD-L1 and PD-L2 in neck node metastases of head and neck squamous cell carcinoma. Head Neck. 2019;41:2484–91.

    Article  PubMed  Google Scholar 

  18. Jie H-B, Gildener-Leapman N, Li J, Srivastava RM, Gibson SP, Whiteside TL, et al. Intratumoral regulatory T cells upregulate immunosuppressive molecules in head and neck cancer patients. Br J Cancer. 2013;109:2629–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. El-Naggar AK, Chan JKC, Grandis JR, Takata T, Slootweg PJ, editors. WHO classification of head and neck tumours. In: World Health Organization classification of tumours. 4th ed. Lyon: International Agency for Research on Cancer; 2017.

  20. Gillison ML, Broutian T, Pickard RKL, Tong Z, Xiao W, Kahle L, et al. Prevalence of oral HPV infection in the United States, 2009–2010. JAMA. 2012;307:693–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A, et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature. 2013;499:214–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hayes DN, Grandis JR, El-Naggar AK. The Cancer Genome Atlas: integrated analysis of genome alterations in squamous cell carcinoma of the head and neck. J Clin Oncol. 2013;31:6009.

    Article  Google Scholar 

  23. Seiwert TY, Zuo Z, Keck MK, Khattri A, Pedamallu CS, Stricker T, et al. Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin Cancer Res. 2015;21:632–41.

    Article  CAS  PubMed  Google Scholar 

  24. Feldman R, Gatalica Z, Knezetic J, Reddy S, Nathan C-A, Javadi N, et al. Molecular profiling of head and neck squamous cell carcinoma. Head Neck. 2016;38(Suppl 1):E1625–1638.

    Article  PubMed  Google Scholar 

  25. Leemans CR, Braakhuis BJM, Brakenhoff RH. The molecular biology of head and neck cancer. Nat Rev Cancer. 2011;11:9–22.

    Article  CAS  PubMed  Google Scholar 

  26. Jung AC, Briolat J, Millon R, de Reyniès A, Rickman D, Thomas E, et al. Biological and clinical relevance of transcriptionally active human papillomavirus (HPV) infection in oropharynx squamous cell carcinoma. Int J Cancer. 2010;126:1882–944.

    Article  CAS  PubMed  Google Scholar 

  27. Lyford-Pike S, Peng S, Young GD, Taube JM, Westra WH, Akpeng B, et al. Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Res. 2013;73:1733–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Taube JM, Anders RA, Young GD, Xu H, Sharma R, McMiller TL, et al. Colocalization of inflammatory response with B7-h1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med. 2012;4:127ra37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Partlová S, Bouček J, Kloudová K, Lukešová E, Zábrodský M, Grega M, et al. Distinct patterns of intratumoral immune cell infiltrates in patients with HPV-associated compared to non-virally induced head and neck squamous cell carcinoma. Oncoimmunology. 2015;4:e965570.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Cavalieri S, Rivoltini L, Bergamini C, Locati LD, Licitra L, Bossi P. Immuno-oncology in head and neck squamous cell cancers: news from clinical trials, emerging predictive factors and unmet needs. Cancer Treat Rev. 2018;65:78–86.

    Article  PubMed  Google Scholar 

  31. Mirghani H, Casiraghi O, Amen F, He M, Ma X-J, Saulnier P, et al. Diagnosis of HPV-driven head and neck cancer with a single test in routine clinical practice. Mod Pathol Springer Nature. 2015;28:1518–27.

    Article  CAS  Google Scholar 

  32. Mehanna H, Robinson M, Hartley A, Kong A, Foran B, Fulton-Lieuw T, et al. Radiotherapy plus cisplatin or cetuximab in low-risk human papillomavirus-positive oropharyngeal cancer (De-ESCALaTE HPV): an open-label randomised controlled phase 3 trial. Lancet. 2019;393:51–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gillison ML, Trotti AM, Harris J, Eisbruch A, Harari PM, Adelstein DJ, et al. Radiotherapy plus cetuximab or cisplatin in human papillomavirus-positive oropharyngeal cancer (NRG Oncology RTOG 1016): a randomised, multicentre, non-inferiority trial. Lancet. 2019;393:40–50.

    Article  CAS  PubMed  Google Scholar 

  34. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tân PF, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363:24–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ruzevick J, Olivi A, Westra WH. Metastatic squamous cell carcinoma to the brain: an unrecognized pattern of distant spread in patients with HPV-related head and neck cancer. J Neurooncol. 2013;112:449–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Saloura V, Izumchenko E, Zuo Z, Bao R, Korzinkin M, Ozerov I, et al. Immune profiles in primary squamous cell carcinoma of the head and neck. Oral Oncol. 2019;96:77–88.

    Article  CAS  PubMed  Google Scholar 

  37. Tsao MS, Kerr KM, Kockx M, Beasley M-B, Borczuk AC, Botling J, et al. PD-L1 Immunohistochemistry comparability study in real-life clinical samples: results of blueprint phase 2 project. J Thorac Oncol. 2018;13:1302–11.

    Article  PubMed  Google Scholar 

  38. Ratcliffe MJ, Sharpe A, Midha A, Barker C, Scott M, Scorer P, et al. Agreement between programmed cell death ligand-1 diagnostic assays across multiple protein expression cutoffs in non–small cell lung cancer. Clin Cancer Res. 2017;23:3585–91.

    Article  CAS  PubMed  Google Scholar 

  39. De Meulenaere A, Vermassen T, Creytens D, Aspeslagh S, Deron P, Duprez F, et al. Importance of choice of materials and methods in PD-L1 and TIL assessment in oropharyngeal squamous cell carcinoma. Histopathology. 2018;73:500–9.

    Article  PubMed  Google Scholar 

  40. Wang C, Hahn E, Slodkowska E, Eskander A, Enepekides D, Higgins K, et al. Reproducibility of PD-L1 immunohistochemistry interpretation across various types of genitourinary and head/neck carcinomas, antibody clones, and tissue types. Hum Pathol. 2018;82:131–9.

    Article  CAS  PubMed  Google Scholar 

  41. Hsu C, Lee S-H, Ejadi S, Even C, Cohen R, Le Tourneau C, et al. Antitumor activity and safety of pembrolizumab in patients with PD-L1-positive nasopharyngeal carcinoma: interim results from a phase 1b study. Ann Oncol. 2015;26:ix94.1–ix94.

    Google Scholar 

  42. FDA. FDA approves pembrolizumab for first-line treatment of head and neck squamous cell carcinoma [Internet]. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-pembrolizumab-first-line-treatment-head-and-neck-squamous-cell-carcinoma. Accessed 20 Feb 2020.

  43. Zandberg DP, Jarkowski A, Emeribe UA, Goswami T, Melillo G. A Phase 2, multicenter, single-arm, global study of MEDI4736 monotherapy in patients with recurrent or metastatic (R/M) squamous cell carcinoma of the head and neck (SCCHN): HAWK (NCT02207530). J Clin Oncol. 2015;33:TPS6086.

    Article  Google Scholar 

  44. Saâda-Bouzid E, Defaucheux C, Karabajakian A, Palomar Coloma V, Servois V, Paoletti X, et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann Oncol Off J Eur Soc Med Oncol. 2017;28:1605–11.

    Article  Google Scholar 

  45. Nizard M, Roussel H, Diniz MO, Karaki S, Tran T, Voron T, et al. Induction of resident memory T cells enhances the efficacy of cancer vaccine. Nat Commun. 2017;8:15221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Massarelli E, William W, Johnson F, Kies M, Ferrarotto R, Guo M, et al. Combining immune checkpoint blockade and tumor-specific vaccine for patients with incurable human papillomavirus 16–related cancer. JAMA Oncol. 2019;5:67.

    Article  PubMed  Google Scholar 

  47. Dako. PD-L1 IHC 22C3 pharmDx interpretation manual—head and neck squamous cell carcinoma (HNSCC) [Internet]. https://www.agilent.com/cs/library/usermanuals/public/29314_22c3_pharmDx_hnscc_interpretation_manual_us.pdf. Accessed 20 Feb 2020.

  48. Duncan DJ, Scott M, Scorer P, Barker C. Assessment of PD-L1 mRNA and protein expression in non-small cell lung cancer, head and neck squamous cell carcinoma and urothelial carcinoma tissue specimens using RNAScope and immunohistochemistry. Ahmad A, editor. PLoS ONE. 2019;14:e0215393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen P-L, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 2016;6:827–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Edwards J, Wilmott JS, Madore J, Gide TN, Quek C, Tasker A, et al. CD103+ tumor-resident CD8+ T cells are associated with improved survival in immunotherapy-naïve melanoma patients and expand significantly during anti-PD-1 treatment. Clin Cancer Res. 2018;24:3036–45.

    Article  CAS  PubMed  Google Scholar 

  51. Strome SE, Savva A, Brissett AE, Gostout BS, Lewis J, Clayton AC, et al. Squamous cell carcinoma of the tonsils: a molecular analysis of HPV associations. Clin Cancer Res An Off J Am Assoc Cancer Res. 2002;8:1093–100.

    CAS  Google Scholar 

  52. Kim HS, Lee JY, Lim SH, Park K, Sun J-M, Ko YH, et al. Association between PD-L1 and HPV status and the prognostic value of PD-L1 in oropharyngeal squamous cell carcinoma. Cancer Res Treat Off J Korean Cancer Assoc. 2016;48:527–36.

    CAS  Google Scholar 

  53. Chen J, Feng Y, Lu L, Wang H, Dai L, Li Y, et al. Interferon-γ-induced PD-L1 surface expression on human oral squamous carcinoma via PKD2 signal pathway. Immunobiology. 2012;217:385–93.

    Article  CAS  PubMed  Google Scholar 

  54. Festino L, Botti G, Lorigan P, Masucci GV, Hipp JD, Horak CE, et al. Cancer treatment with anti-PD-1/PD-L1 agents: is PD-L1 expression a biomarker for patient selection? Drugs. 2016;76:925–45

    Article  CAS  PubMed  Google Scholar 

  55. Gooden MJM, de Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer. 2011;105:93–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li X, Li M, Lian Z, Zhu H, Kong L, Wang P, et al. Prognostic role of programmed death ligand-1 expression in breast cancer: A systematic review and meta-analysis. Target Oncol. 2016;11:753–61.

    Article  PubMed  Google Scholar 

  57. Epacadostat shows value in two SCCHN trials. Cancer Discov. 2017;7:OF2. https://doi.org/10.1158/2159-8290.CD-NB2017-100.

  58. Ferris RL, Blumenschein G, Fayette J, Guigay J, Colevas AD, Licitra L, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med. 2016;375:1856–867.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Burtness B, Harrington KJ, Greil R, Soulières D, Tahara M, de Castro G, et al. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet. 2019;394:1915–28.

    Article  CAS  PubMed  Google Scholar 

  60. Elbers JBW, Al-Mamgani A, Tesseslaar MET, van den Brekel MWM, Lange CAH, van der Wal JE, et al. Immuno-radiotherapy with cetuximab and avelumab for advanced stage head and neck squamous cell carcinoma: Results from a phase-I trial. Radiother Oncol. 2019;142:79–84.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Manon Labrande for language editing and reviewing, and Servier Medical Art for providing the art material used for Figs. 1 and 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cécile Badoual.

Ethics declarations

Conflict of interest

Cécile Badoual has received research grants from Servier, has been member of advisory board BMS, Astrazeneca, MSD and has speaker honorarium from Merck, BMS, Roche, Astrazeneca. Eric Tartour has received research grants from GSK, Vaxeal, Servier, has been member of advisory board BMS, Astra-Zeneca and has speaker honorarium from Merck, BMS, Roche. Sophie Outh-Gauer, Aurélien Morini, Charles Lépine, Alain Jung declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Outh-Gauer, S., Morini, A., Tartour, E. et al. The Microenvironment of Head and Neck Cancers: Papillomavirus Involvement and Potential Impact of Immunomodulatory Treatments. Head and Neck Pathol 14, 330–340 (2020). https://doi.org/10.1007/s12105-020-01147-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12105-020-01147-x

Keywords

Navigation